Suppose \[AB = \left[ {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{4}}\\{ - {\bf{2}}}&{\bf{3}}\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}{\bf{7}}&{\bf{3}}\\{\bf{2}}&{\bf{1}}\end{array}} \right]\]. Find A.

Short Answer

Expert verified

The matrix \[A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{13}\\{ - 8}&{27}\end{array}} \right]\].

Step by step solution

01

Use the inverse formula

\[{\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]when \[ad - bc \ne 0\].

02

Find the inverse of B

\[\begin{array}{c}{B^{ - 1}} = {\left[ {\begin{array}{*{20}{c}}7&3\\2&1\end{array}} \right]^{ - 1}}\\ = \frac{1}{{7\left( 1 \right) - 3\left( 2 \right)}}\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = \frac{1}{{7 - 6}}\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = 1\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\{B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\end{array}\]

03

Find A

Right multiply \[{B^{ - 1}}\] on both sides of \[AB = \left[ {\begin{array}{*{20}{c}}7&3\\2&1\end{array}} \right]\]. Therefore,

\[\begin{array}{c}AB{B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}5&4\\{ - 2}&3\end{array}} \right]{B^{ - 1}}\\A = \left[ {\begin{array}{*{20}{c}}5&4\\{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 2}&7\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{5 - 8}&{ - 15 + 28}\\{ - 2 - 6}&{6 + 21}\end{array}} \right]\\A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{13}\\{ - 8}&{27}\end{array}} \right]\end{array}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Compute \(A - {\bf{5}}{I_{\bf{3}}}\) and \(\left( {{\bf{5}}{I_{\bf{3}}}} \right)A\)

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{9}}&{ - {\bf{1}}}&{\bf{3}}\\{ - {\bf{8}}}&{\bf{7}}&{ - {\bf{6}}}\\{ - {\bf{4}}}&{\bf{1}}&{\bf{8}}\end{aligned}} \right)\)

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

Generalize the idea of Exercise 21(a) [not 21(b)] by constructing a \(5 \times 5\) matrix \(M = \left[ {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right]\) such that \({M^2} = I\). Make C a nonzero \(2 \times 3\) matrix. Show that your construction works.

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free