Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

3.\[y = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{3}}\end{aligned}} \right]\],\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\)

Short Answer

Expert verified

The orthogonal projection is \(\left[ {\begin{aligned}{ - 1}\\4\\0\end{aligned}} \right]\).

Step by step solution

01

Perform the orthogonality test for \({{\bf{u}}_1}\) and \({{\bf{u}}_{\bf{2}}}\)

The orthogonality test for vectors\({{\bf{u}}_1}\)and\({{\bf{u}}_2}\)can be performed as follows:

\(\begin{aligned}{{\bf{u}}_1} \cdot {{\bf{u}}_2} = {\bf{u}}_1^T{{\bf{u}}_2}\\ &= \left[ {\begin{aligned}1&1&0\end{aligned}} \right]\left[ {\begin{aligned}{ - 1}\\1\\0\end{aligned}} \right]\\ &= \left( 1 \right)\left( { - 1} \right) + \left( 1 \right)\left( 1 \right) + \left( 0 \right)\left( 0 \right)\\ &= - 1 + 1\\ &= 0\end{aligned}\)

Thus, the vectors \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\) are orthogonal.

02

Find the orthogonal component

The orthogonal component in the\({\rm{span}}\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\)is:

\(\begin{aligned}{\bf{\hat y}} &= \frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \frac{{{\bf{y}} \cdot {{\bf{u}}_{\bf{2}}}}}{{{{\bf{u}}_{\bf{2}}} \cdot {{\bf{u}}_{\bf{2}}}}}{{\bf{u}}_2}\\ &= \frac{{{{\bf{y}}^T} \cdot {{\bf{u}}_1}}}{{{\bf{u}}_{\bf{1}}^T \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \frac{{{{\bf{y}}^T} \cdot {{\bf{u}}_{\bf{2}}}}}{{{\bf{u}}_2^T \cdot {{\bf{u}}_{\bf{2}}}}}{{\bf{u}}_2}\\ &= \frac{{\left[ {\begin{aligned}{ - 1}&4&3\end{aligned}} \right]\left[ {\begin{aligned}1\\1\\0\end{aligned}} \right]}}{{\left[ {\begin{aligned}1&1&0\end{aligned}} \right]\left[ {\begin{aligned}1\\1\\0\end{aligned}} \right]}}{{\bf{u}}_1} + \frac{{\left[ {\begin{aligned}{ - 1}&4&3\end{aligned}} \right]\left[ {\begin{aligned}{ - 1}\\1\\0\end{aligned}} \right]}}{{\left[ {\begin{aligned}{ - 1}&1&0\end{aligned}} \right]\left[ {\begin{aligned}{ - 1}\\1\\0\end{aligned}} \right]}}{{\bf{u}}_2}\\ &= \frac{{ - 1 + 4}}{{1 + 1}}{{\bf{u}}_1} + \frac{{1 + 4}}{{1 + 1}}{{\bf{u}}_2}\\ &= \frac{3}{2}\left[ {\begin{aligned}1\\1\\0\end{aligned}} \right] + \frac{5}{2}\left[ {\begin{aligned}{ - 1}\\1\\0\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{ - 1}\\4\\0\end{aligned}} \right]\end{aligned}\)

Thus, the orthogonal projection is\(\left[ {\begin{aligned}{ - 1}\\4\\0\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A Householder matrix, or an elementary reflector, has the form \(Q = I - 2{\bf{u}}{{\bf{u}}^T}\) where u is a unit vector. (See Exercise 13 in the Supplementary Exercise for Chapter 2.) Show that Q is an orthogonal matrix. (Elementary reflectors are often used in computer programs to produce a QR factorization of a matrix A. If A has linearly independent columns, then left-multiplication by a sequence of elementary reflectors can produce an upper triangular matrix.)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

To measure the take-off performance of an airplane, the horizontal position of the plane was measured every second, from \(t = 0\) to \(t = 12\). The positions (in feet) were: 0, 8.8, 29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8, 809.2.

a. Find the least-squares cubic curve \(y = {\beta _0} + {\beta _1}t + {\beta _2}{t^2} + {\beta _3}{t^3}\) for these data.

b. Use the result of part (a) to estimate the velocity of the plane when \(t = 4.5\) seconds.

Let \({{\bf{u}}_1},......,{{\bf{u}}_p}\) be an orthogonal basis for a subspace \(W\) of \({\mathbb{R}^n}\), and let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be defined by \(T\left( x \right) = {\rm{pro}}{{\rm{j}}_W}x\). Show that \(T\) is a linear transformation.

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation that preserves lengths; that is, \(\left\| {T\left( {\bf{x}} \right)} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).

  1. Show that T also preserves orthogonality; that is, \(T\left( {\bf{x}} \right) \cdot T\left( {\bf{y}} \right) = 0\) whenever \({\bf{x}} \cdot {\bf{y}} = 0\).
  2. Show that the standard matrix of T is an orthogonal matrix.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free