Suppose radioactive substance A and B have decay constants of \(.02\) and \(.07\), respectively. If a mixture of these two substances at a time \(t = 0\) contains \({M_A}\) grams of \(A\) and \({M_B}\) grams of \(B\), then a model for the total amount of mixture present at time \(t\) is

\(y = {M_A}{e^{ - .02t}} + {M_B}{e^{ - .07t}}\) (6)

Suppose the initial amounts \({M_A}\) and are unknown, but a scientist is able to measure the total amounts present at several times and records the following points \(\left( {{t_i},{y_i}} \right):\left( {10,21.34} \right),\left( {11,20.68} \right),\left( {12,20.05} \right),\left( {14,18.87} \right)\) and \(\left( {15,18.30} \right)\).

a.Describe a linear model that can be used to estimate \({M_A}\) and \({M_B}\).

b. Find the least-squares curved based on (6).

Short Answer

Expert verified

(a) The required matrix and vectors are shown below:

Design Matrix: \(X = \left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)\)

Observation vector: \({\bf{y}} = \left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

Parameter vector: \(\beta = \left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\)

(b) The least-squares equation is \(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\).

Step by step solution

01

The General Linear Model

The equation of the general linear model is defined as:

\({\bf{y}} = X\beta + \in \)

Here, \({\bf{y}} = \left( {\begin{aligned}{{y_1}}\\{{y_2}}\\ \vdots \\{{y_n}}\end{aligned}} \right)\) is an observational vector, \(X = \left( {\begin{aligned}1&{{x_1}}& \cdots &{x_1^n}\\1&{{x_2}}& \cdots &{x_2^n}\\ \vdots & \vdots & \ddots & \vdots \\1&{{x_n}}& \cdots &{x_n^n}\end{aligned}} \right)\) is the design matrix, \(\beta = \left( {\begin{aligned}{{\beta _1}}\\{{\beta _2}}\\ \vdots \\{{\beta _n}}\end{aligned}} \right)\) is the parameter vector, and \( \in = \left( {\begin{aligned}{{ \in _1}}\\{{ \in _2}}\\ \vdots \\{{ \in _n}}\end{aligned}} \right)\) is the residual vector.

02

Find design matrix, observation vector, parameter vector for given data 

(a)

The given equation is\(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\), and the given data sets are \(\left( {10,21.34} \right)\), \(\left( {11,20.68} \right)\), \(\left( {12,20.05} \right)\), \(\left( {14,18.87} \right)\) and \(\left( {15,18.30} \right)\).

Write the Design matrix, observational vector, and the parameter vector for the given equation and data set by using the information given in step 1.

Design matrix:

\(X = \left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)\)

Observational vector:

\({\bf{y}} = \left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

And the parameter vectorfor the given equation is,

\(\beta = \left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\)

Thus, the above values are the best fit for the given data set and equation.

03

Normal equation

The normal equation is given by,

\({X^T}X\beta = {X^T}{\bf{y}}\)

04

Find the least-squares curve

The general least-squares equation is given by \(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\), and to find the associated least-squares curve, the values of \({M_A},{M_B}\) are required, so find the values of \({M_A},{M_B}\) by using normal equation.

By using the obtained information from step 2, the normal equation will be,

\(\beta = {\left( {{X^T}X} \right)^{ - 1}}{X^T}{\bf{y}}\)

That implies;

\(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\)

Use the following steps to find the associated values for the obtained data in MATLAB.

  1. Enter the data \(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right) = {\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\) in the tab in the form of \({\left( {{{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)}^T}\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)} \right)^{ - 1}}{\left( {\begin{aligned}{{e^{ - 0.02\left( {10} \right)}}}&{{e^{ - 0.07\left( {10} \right)}}}\\{{e^{ - 0.02\left( {11} \right)}}}&{{e^{ - 0.07\left( {11} \right)}}}\\{{e^{ - 0.02\left( {12} \right)}}}&{{e^{ - 0.07\left( {12} \right)}}}\\{{e^{ - 0.02\left( {14} \right)}}}&{{e^{ - 0.07\left( {14} \right)}}}\\{{e^{ - 0.02\left( {15} \right)}}}&{{e^{ - 0.07\left( {15} \right)}}}\end{aligned}} \right)^T}\left( {\begin{aligned}{21.34}\\{20.68}\\{20.05}\\{18.87}\\{18.30}\end{aligned}} \right)\).
  2. Use colons after that and press ENTER.

So, the value of \(\left( {\begin{aligned}{{M_A}}\\{{M_B}}\end{aligned}} \right)\) is \(\left( {\begin{aligned}{19.94}\\{10.10}\end{aligned}} \right)\).

Now, substitute the obtained values into \(y = {M_A}{e^{ - 0.02t}} + {M_B}{e^{ - 0.07t}}\).

\(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\)

So, the required equation is \(y = 19.94{e^{ - 0.02t}} + 10.10{e^{ - 0.07t}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

A simple curve that often makes a good model for the variable costs of a company, a function of the sales level \(x\), has the form \(y = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\). There is no constant term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above, with data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

b. Find the least-squares curve of the form above to fit the data \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\), with values in thousands. If possible, produce a graph that shows the data points and the graph of the cubic approximation.

Let \(X\) be the design matrix used to find the least square line of fit data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\). Use a theorem in Section 6.5 to show that the normal equations have a unique solution if and only if the data include at least two data points with different \(x\)-coordinates.

In Exercises 5-14, the space is \(C\left[ {0,2\pi } \right]\) with inner product (6).

7. Show that \({\left\| {\cos kt} \right\|^2} = \pi \) and \({\left\| {\sin kt} \right\|^2} = \pi \) for \(k > 0\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free