Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

11. \(\left( {\begin{aligned}{{}{}}1&2&5\\{ - 1}&1&{ - 4}\\{ - 1}&4&{ - 3}\\1&{ - 4}&7\\1&2&1\end{aligned}} \right)\)

Short Answer

Expert verified

An orthogonal basis for the column space is \(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}3\\0\\3\\{ - 3}\\3\end{aligned}} \right),\left( {\begin{aligned}{{}{}}2\\0\\2\\2\\{ - 2}\end{aligned}} \right)} \right\}\).

Step by step solution

01

The Gram-Schmidt process

With abasis\(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)for a nonzero subspace \(W\) of \({\mathbb{R}^n}\), the expressionis shown below:

\(\begin{aligned}{}{{\bf{v}}_1} & = {{\bf{x}}_1}\\{{\bf{v}}_2} & = {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ \vdots \\{{\bf{v}}_p} & = \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_p} - \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_p} - \ldots - \frac{{{{\bf{x}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{{{\bf{v}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{\bf{v}}_{p - 1}}\end{aligned}\)

Therefore, theorthogonal basisfor \(W\) is \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\). Furthermore,

\({\mathop{\rm Span}\nolimits} \left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}} \right\} = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}} \right\}\) for \(1 \le k \le p\).

02

Determine an orthogonal basis for the column space

Consider the columns of the matrix as \({{\bf{x}}_1},{{\bf{x}}_2}\), and \({{\bf{x}}_3}\).

Apply the Gram-Schmidt process on these vectors to obtain an orthogonal basis as shown below:

\(\begin{aligned}{}{{\bf{v}}_1} & = {{\bf{x}}_1}\\{{\bf{v}}_2} & = {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1}\\ & = {{\bf{x}}_2} - \frac{{ - 5}}{5}{{\bf{v}}_1}\\ & = {{\bf{x}}_2} - \left( { - 1} \right){{\bf{v}}_1}\\ & = \left( {\begin{aligned}{{}{}}2\\1\\4\\{ - 4}\\2\end{aligned}} \right) + \left( {\begin{aligned}{{}{}}1\\{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{2 + 1}\\{1 - 1}\\{4 - 1}\\{ - 4 + 1}\\{2 + 1}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}3\\0\\3\\{ - 3}\\3\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{v}}_3} & = {{\bf{x}}_3} - \frac{{{{\bf{x}}_3} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} - \frac{{{{\bf{x}}_3} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2}\\ & = {{\bf{x}}_3} - \frac{{20}}{5}{{\bf{v}}_1} - \left( {\frac{{ - 12}}{{36}}} \right){{\bf{v}}_2}\\ & = {{\bf{x}}_3} - 4{{\bf{v}}_1} - \left( { - \frac{1}{3}} \right){{\bf{v}}_2}\\ & = \left( {\begin{aligned}{{}{}}5\\{ - 4}\\{ - 3}\\7\\1\end{aligned}} \right) - 4\left( {\begin{aligned}{{}{}}1\\{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right) + \frac{1}{3}\left( {\begin{aligned}{{}{}}3\\0\\3\\{ - 3}\\3\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{5 - 4 + 1}\\{ - 4 + 4 + 0}\\{ - 3 + 4 + 1}\\{7 - 4 - 1}\\{1 - 4 + 1}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}2\\0\\2\\2\\{ - 2}\end{aligned}} \right)\end{aligned}\)

Hence, an orthogonal basis for the column space is \(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 1}\\{ - 1}\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}3\\0\\3\\{ - 3}\\3\end{aligned}} \right),\left( {\begin{aligned}{{}{}}2\\0\\2\\2\\{ - 2}\end{aligned}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

To measure the take-off performance of an airplane, the horizontal position of the plane was measured every second, from \(t = 0\) to \(t = 12\). The positions (in feet) were: 0, 8.8, 29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8, 809.2.

a. Find the least-squares cubic curve \(y = {\beta _0} + {\beta _1}t + {\beta _2}{t^2} + {\beta _3}{t^3}\) for these data.

b. Use the result of part (a) to estimate the velocity of the plane when \(t = 4.5\) seconds.

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set in \({\mathbb{R}^n}\). Verify the following inequality, called Bessel’s inequality, which is true for each x in \({\mathbb{R}^n}\):

\({\left\| {\bf{x}} \right\|^2} \ge {\left| {{\bf{x}} \cdot {{\bf{v}}_1}} \right|^2} + {\left| {{\bf{x}} \cdot {{\bf{v}}_2}} \right|^2} + \ldots + {\left| {{\bf{x}} \cdot {{\bf{v}}_p}} \right|^2}\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

Find the distance between \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right)\) and \({\mathop{\rm y}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free