In Exercises 9-12, find a unit vector in the direction of the given vector.

11. \(\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\)

Short Answer

Expert verified

The unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\).

Step by step solution

01

Definition of a unit vector

Aunit vectoris a vector with a length of 1. When dividing a nonzero vector v by its length, namely, multiply by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\), we get a unit vector u since \(\left( {\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}} \right)\left\| {\mathop{\rm v}\nolimits} \right\|\) is the length of u. The process of producing u from v is known as thenormalizingv, and we describe that u is in the same direction as v.

02

Determine the unit vector in the direction

It is given that \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\).

Compute the length of \({\mathop{\rm v}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left\| {\mathop{\rm v}\nolimits} \right\| &= \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \\ &= \sqrt {{{\left( {\frac{7}{4}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( 1 \right)}^2}} \\ &= \sqrt {\left( {\frac{{49}}{{16}}} \right) + \left( {\frac{1}{4}} \right) + 1} \\ &= \sqrt {\frac{{49 + 4 + 16}}{{16}}} \\ &= \sqrt {\frac{{69}}{{16}}} \end{aligned}\)

Multiply v by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\) to obtain the unit vector \({\mathop{\rm u}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} &= \frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}{\mathop{\rm v}\nolimits} \\ &= \frac{1}{{\sqrt {\frac{{69}}{{16}}} }}\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\frac{{4\sqrt {69} }}{4}}}}\\{\frac{1}{{\frac{{2\sqrt {69} }}{4}}}}\\{\frac{1}{{\frac{{\sqrt {69} }}{4}}}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\end{aligned}\)

Thus, the unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{7}{{\sqrt {69} }}}\\{\frac{2}{{\sqrt {69} }}}\\{\frac{4}{{\sqrt {69} }}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the least-squares error associated with the least square solution found in Exercise 3.

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,{\rm{ }}{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

3. \(\left( {\begin{aligned}{{}{}}2\\{ - 5}\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}4\\{ - 1}\\2\end{aligned}} \right)\)

A simple curve that often makes a good model for the variable costs of a company, a function of the sales level \(x\), has the form \(y = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\). There is no constant term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above, with data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

b. Find the least-squares curve of the form above to fit the data \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\), with values in thousands. If possible, produce a graph that shows the data points and the graph of the cubic approximation.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free