In Exercises 15 and 16, use the factorization \(A = QR\) to find the least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

15. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{3}}\\{\bf{2}}&{\bf{4}}\\{\bf{1}}&{\bf{1}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{1}}}{{\bf{3}}}}&{ - \frac{{\bf{2}}}{{\bf{3}}}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{\bf{3}}&{\bf{5}}\\{\bf{0}}&{\bf{1}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\)

Short Answer

Expert verified

The least-square solution of \(A{\bf{x}} = {\bf{b}}\) is \(\left( {\begin{aligned}{{}{}}4\\{ - 1}\end{aligned}} \right)\).

Step by step solution

01

Use the least-square solution

Compare the given solution with the equation \(R{\bf{\hat x}} = {Q^T}{\bf{b}}\).

\({Q^T}{\bf{b}} = \left( {\begin{aligned}{{}{}}{\frac{2}{3}}&{\frac{2}{3}}&{\frac{1}{3}}\\{ - \frac{1}{3}}&{\frac{2}{3}}&{ - \frac{2}{3}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}7\\3\\1\end{aligned}} \right)\), \(R = \left( {\begin{aligned}{{}{}}3&5\\0&1\end{aligned}} \right)\)

02

Find the product \({Q^T}{\bf{b}}\)

The product \({Q^T}{\bf{b}}\) can be calculated as follows:

\(\begin{aligned}{}{Q^T}{\bf{b}} &= \left( {\begin{aligned}{{}{}}{\frac{2}{3}}&{\frac{2}{3}}&{\frac{1}{3}}\\{ - \frac{1}{3}}&{\frac{2}{3}}&{ - \frac{2}{3}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}7\\3\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{\frac{{14}}{3} + \frac{6}{3} + \frac{1}{3}}\\{ - \frac{7}{3} + \frac{6}{3} - \frac{2}{3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}7\\{ - 1}\end{aligned}} \right)\end{aligned}\)

03

Write the augmented matrix \(\left( {\begin{aligned}{{}{}}R&{{Q^T}{\bf{b}}}\end{aligned}} \right)\)

The augmented matrix is:

\(\begin{aligned}{}\left( {\begin{aligned}{{}{}}R&{{Q^T}{\bf{b}}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}{}}3&5&7\\0&1&{ - 1}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}1&{\frac{5}{3}}&{\frac{7}{3}}\\0&1&{ - 1}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to \frac{{{R_1}}}{3}} \right)\\ &= \left( {\begin{aligned}{{}{}}1&0&4\\0&1&{ - 1}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - \frac{5}{3}{R_2}} \right)\end{aligned}\)

Thus, the least square solution of \(A{\bf{x}} = {\bf{b}}\) is \(\left( {\begin{aligned}{{}{}}4\\{ - 1}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {0,1} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,2} \right)\)

Find the distance between \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right)\) and \({\mathop{\rm y}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\).

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

10.\[y = \left[ {\begin{aligned}3\\4\\5\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\0\\1\\1\end{aligned}} \right]\],\[{{\bf{u}}_3} = \left[ {\begin{aligned}0\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Let \(X\) be the design matrix in Example 2 corresponding to a least-square fit of parabola to data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\). Suppose \({x_1}\), \({x_2}\) and \({x_3}\) are distinct. Explain why there is only one parabola that best, in a least-square sense. (See Exercise 5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free