Use the inner product axioms and other results of this section to verify the statements in Exercises 15–18.

\(\left\langle {{\rm{u,v}}} \right\rangle = \frac{1}{4}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} - \frac{1}{4}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2}\).

Short Answer

Expert verified

The statement \(\left\langle {{\rm{u,v}}} \right\rangle = \frac{1}{4}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} - \frac{1}{4}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2}\) is verified.

Step by step solution

01

Apply axiom 2

According to axiom 2, if \({\bf{u}}\) and \({\rm{v}}\) be pair of vectors in a vector space \(V\), then, the inner product on \(V\), relates a real number \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle \)and satisfies the axiom, \(\left\langle {{\bf{u}} + {\rm{v,}}\,{\rm{w}}} \right\rangle = \left\langle {{\rm{u,w}}} \right\rangle + \left\langle {{\rm{v,w}}} \right\rangle \) for all \({\bf{u}}\), \({\rm{v}}\), \({\rm{w}}\)and scalars \(c\).

Apply axiom 2 to the left side of the given equation, as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} &= \left\langle {{\rm{u}} + {\rm{v,}}\,{\rm{u}} + {\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}} + {\rm{v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{u}} + {\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle + \left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{u}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \end{aligned}\)

02

Apply axiom 1

According to axiom 1, if \({\bf{u}}\) and \({\rm{v}}\) be pair of vectors in a vector space \(V\), then, the inner product on \(V\), relates a real number \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle \)and satisfies the axiom, \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle = \left\langle {{\rm{v}},{\rm{u}}} \right\rangle \)for all \({\bf{u}}\), \({\rm{v}}\), \({\rm{w}}\)and scalars \(c\).

Apply axiom 1 to the left side of the given equation, as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle + \left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle + {\rm{2}}\left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \\ &= {\left\| {\rm{u}} \right\|^2} + 2\left\langle {{\rm{u,v}}} \right\rangle + {\left\| {\rm{v}} \right\|^2}\end{aligned}\)

Following the same steps, we can write that \({\left\| {{\rm{u}} - {\rm{v}}} \right\|^2} = {\left\| {\rm{u}} \right\|^2} - 2\left\langle {{\rm{u,v}}} \right\rangle + {\left\| {\rm{v}} \right\|^2}\).

03

Subtract the two results

Subtract the obtain equation for\({\left\| {{\rm{u}} + {\rm{v}}} \right\|^2}\)and\({\left\| {{\rm{u}} - {\rm{v}}} \right\|^2}\), as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} - {\left\| {{\rm{u}} - {\rm{v}}} \right\|^2} &= \left( {{{\left\| {\rm{u}} \right\|}^2} + 2\left\langle {{\rm{u,v}}} \right\rangle + {{\left\| {\rm{v}} \right\|}^2}} \right) - \left( {{{\left\| {\rm{u}} \right\|}^2} - 2\left\langle {{\rm{u,v}}} \right\rangle + {{\left\| {\rm{v}} \right\|}^2}} \right)\\ &= 4\left\langle {{\rm{u,v}}} \right\rangle \end{aligned}\)

Now divide the resulting equation by 4 and simplify as shown below:

\(\begin{aligned}{}\frac{{{{\left\| {{\rm{u}} + {\rm{v}}} \right\|}^2} - {{\left\| {{\rm{u}} - {\rm{v}}} \right\|}^2}}}{4} &= \frac{{4\left\langle {{\rm{u,v}}} \right\rangle }}{4}\\\left\langle {{\rm{u,v}}} \right\rangle &= \frac{1}{4}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} - \frac{1}{4}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2}\end{aligned}\)

Thus, the statement\(\left\langle {{\rm{u,v}}} \right\rangle = \frac{1}{4}{\left\| {{\rm{u}} + {\rm{v}}} \right\|^2} - \frac{1}{4}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2}\) is verified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align} 2\\{-5}\\{-3}\end{align}} \right]\), \(\left[ {\begin{align}0\\0\\0\end{align}} \right]\), \(\left[ {\begin{align} 4\\{ - 2}\\6\end{align}} \right]\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[{\bf{y}}\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

5.\[y = \left[ {\begin{aligned}{ - 1}\\2\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}3\\{ - 1}\\2\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\{ - 2}\end{aligned}} \right]\]

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\) may be written in the form

\(\begin{aligned}{c}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

Derive the normal equations (7) from the matrix form given in this section.

[M] Let \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) be the fourth-order and fifth order Fourier approximations in \(C\left[ {{\bf{0}},{\bf{2}}\pi } \right]\) to the square wave function in Exercise 10. Produce separate graphs of \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) on the interval \(\left[ {{\bf{0}},{\bf{2}}\pi } \right]\), and produce graph of \({f_{\bf{5}}}\) on \(\left[ { - {\bf{2}}\pi ,{\bf{2}}\pi } \right]\).

Suppose the x-coordinates of the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) are in mean deviation form, so that \(\sum {{x_i}} = 0\). Show that if \(X\) is the design matrix for the least-squares line in this case, then \({X^T}X\) is a diagonal matrix.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free