In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

1. \(A = \left[ {\begin{aligned}{{}{}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{1}}}&{\bf{3}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{\bf{1}}\\{\bf{2}}\end{aligned}} \right]\)

Short Answer

Expert verified

(a) \(\left[ {\begin{aligned}{{}{}}{ - 4}\\{11}\end{aligned}} \right]\)

(b)\(\left[ {\begin{aligned}{{}{}}3\\2\end{aligned}} \right]\)

Step by step solution

01

(a) Step 1: Find the products \({A^T}A\) and \({A^T}{\bf{b}}\)

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A &= \left[ {\begin{aligned}{{}{}}{ - 1}&2&{ - 1}\\2&{ - 3}&3\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{ - 1}&2\\2&{ - 3}\\{ - 1}&3\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}6&{ - 11}\\{ - 11}&{22}\end{aligned}} \right]\end{aligned}\)

Find the product \({A^T}{\bf{b}}\).

\(\begin{aligned}{}{A^T}{\bf{b}} &= \left[ {\begin{aligned}{{}{}}{ - 1}&2&{ - 1}\\2&{ - 3}&3\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}4\\1\\2\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - 4}\\{11}\end{aligned}} \right]\end{aligned}\)

02

Find the solution by constructing the normal equations

The normal equations can be written as:

\(\begin{aligned}{}\left( {{A^T}A} \right){\bf{x}} = {A^T}{\bf{b}}\\\left[ {\begin{aligned}{{}{}}6&{ - 11}\\{ - 11}&{22}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right] = \left[ {\begin{aligned}{{}{}}{ - 4}\\{11}\end{aligned}} \right]\end{aligned}\)

03

(b) Step 3: Find the component \({\bf{\hat x}}\)

The component \({\bf{\hat x}}\) can be calculated as:

\(\begin{aligned}{}{\bf{\hat x}} &= {\left( {{A^T}A} \right)^{ - 1}}\left( {{A^T}{\bf{b}}} \right)\\ &= {\left[ {\begin{aligned}{{}{}}6&{ - 11}\\{ - 11}&{22}\end{aligned}} \right]^{ - 1}}\left[ {\begin{aligned}{{}{}}{ - 4}\\{11}\end{aligned}} \right]\\ &= \frac{1}{{11}}\left[ {\begin{aligned}{{}{}}{22}&{11}\\{11}&6\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{ - 4}\\{11}\end{aligned}} \right]\\ &= \frac{1}{{11}}\left[ {\begin{aligned}{{}{}}{33}\\{22}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}3\\2\end{aligned}} \right]\end{aligned}\)

The \({\bf{\hat x}}\) component is \(\left[ {\begin{aligned}{{}{}}3\\2\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

3. \(\left( {\begin{aligned}{{}{}}2\\{ - 5}\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}4\\{ - 1}\\2\end{aligned}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,{\rm{ }}{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}\)

In Exercises 13 and 14, the columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that \(A = QR\). Check your work.

13. \(A = \left( {\begin{aligned}{{}{}}5&9\\1&7\\{ - 3}&{ - 5}\\1&5\end{aligned}} \right),{\rm{ }}Q = \left( {\begin{aligned}{{}{}}{\frac{5}{6}}&{ - \frac{1}{6}}\\{\frac{1}{6}}&{\frac{5}{6}}\\{ - \frac{3}{6}}&{\frac{1}{6}}\\{\frac{1}{6}}&{\frac{3}{6}}\end{aligned}} \right)\)

A Householder matrix, or an elementary reflector, has the form \(Q = I - 2{\bf{u}}{{\bf{u}}^T}\) where u is a unit vector. (See Exercise 13 in the Supplementary Exercise for Chapter 2.) Show that Q is an orthogonal matrix. (Elementary reflectors are often used in computer programs to produce a QR factorization of a matrix A. If A has linearly independent columns, then left-multiplication by a sequence of elementary reflectors can produce an upper triangular matrix.)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

2. \(\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\6\\{ - 7}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free