Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1, and let \({\bf{x}} = \left( {{\bf{1}},{\bf{1}}} \right)\) and \({\bf{y}} = \left( {{\bf{5}}, - {\bf{1}}} \right)\).

a. Find\(\left\| {\bf{x}} \right\|\),\(\left\| {\bf{y}} \right\|\), and\({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).

b. Describe all vectors\(\left( {{z_{\bf{1}}},{z_{\bf{2}}}} \right)\), that are orthogonal to y.

Short Answer

Expert verified

(a) \(\left\| {\bf{x}} \right\| = 3\),\(\left\| {\bf{y}} \right\| = \sqrt {105} \)and \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2} = 225\)

(b) The set of vectors \(\left( {{z_1},{z_2}} \right)\) are in the form of \(\frac{{{z_1}}}{1} = \frac{{{z_2}}}{4}\).

Step by step solution

01

Find answer for part (a)

Find the value of \(\left\| {\bf{x}} \right\|\).

\(\begin{aligned}\left\| {\bf{x}} \right\| &= \sqrt {\left\langle {{\bf{x}},{\bf{x}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( {1,1} \right),\left( {1,1} \right)} \right\rangle } \\ &= \sqrt {4\left( 1 \right)\left( 1 \right) + 5\left( 1 \right)\left( 1 \right)} \\ &= \sqrt 9 \\ &= 3\end{aligned}\)

Thus, the value of \(\left\| {\bf{x}} \right\|\) is 3.

Find the value of \(\left\| {\bf{y}} \right\|\).

\(\begin{aligned}\left\| {\bf{y}} \right\| &= \sqrt {\left\langle {{\bf{y}},{\bf{y}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( {5, - 1} \right),\left( {5, - 1} \right)} \right\rangle } \\ &= \sqrt {4\left( 5 \right)\left( 5 \right) + 5\left( { - 1} \right)\left( { - 1} \right)} \\ &= \sqrt {105} \end{aligned}\)

Thus, the value of \(\left\| {\bf{y}} \right\|\) is \(\sqrt {105} \).

Find the value of \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2}\).

\(\begin{aligned}{\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2} &= {\left| {\left\langle {\left( {1,1} \right),\left( {5, - 1} \right)} \right\rangle } \right|^2}\\ &= {\left| {4\left( 1 \right)\left( 5 \right) + 5\left( 1 \right)\left( { - 1} \right)} \right|^2}\\ &= {\left| {15} \right|^2}\\ &= 225\end{aligned}\)

Thus, the value of \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2}\) is 225.

02

Find answer for part (b)

The vectors \(\left( {{z_1},{z_2}} \right)\) are orthogonal to \(y\), if and only if \(\left\langle {z,{\bf{y}}} \right\rangle = 0\). Therefore,

\(\begin{aligned}\left\langle {z,{\bf{y}}} \right\rangle &= 0\\\left\langle {\left( {{z_1},{z_2}} \right),\left( {5, - 1} \right)} \right\rangle &= 0\\4\left( {{z_1}} \right)\left( 5 \right) + 5\left( { - 1} \right)\left( {{z_2}} \right) &= 0\\20{z_1} &= 5{z_2}\\\frac{{{z_1}}}{1} &= \frac{{{z_2}}}{4}\end{aligned}\)

Thus, the set of vectors \(\left( {{z_1},{z_2}} \right)\) are in the form of \(\frac{{{z_1}}}{1} = \frac{{{z_2}}}{4}\).

So, all the multiples of the vector \(\left( {\begin{aligned}1\\4\end{aligned}} \right)\) are orthogonal to the vector y.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

9. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{5}}\\{\bf{3}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{4}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{ - {\bf{2}}}\\{ - {\bf{3}}}\end{aligned}} \right]\)

Suppose the x-coordinates of the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) are in mean deviation form, so that \(\sum {{x_i}} = 0\). Show that if \(X\) is the design matrix for the least-squares line in this case, then \({X^T}X\) is a diagonal matrix.

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

4.\(y = \left[ {\begin{aligned}{\bf{6}}\\{\bf{3}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{3}}\\{\bf{4}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{4}}}\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right]\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

4. \(\left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{ - 3}\\{14}\\{ - 7}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free