Let \({\rm{u}} = \left( \begin{array}{l}a\\b\end{array} \right)\)and\({\rm{v}} = \left( \begin{array}{l}1\\1\end{array} \right)\). Use the Cauchy–Schwarz inequality to show that \({\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\).

Short Answer

Expert verified

The inequality \({\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\) is proved to be true.

Step by step solution

01

Use the given information

It is given that \({\rm{u}} = \left( \begin{array}{l}a\\b\end{array} \right)\) and \({\rm{v}} = \left( \begin{array}{l}1\\1\end{array} \right)\). So, according to inner product axioms, \({\left\| {\rm{u}} \right\|^2} = {a^2} + {b^2}\) and \({\left\| {\rm{v}} \right\|^2} = 2\)and\(\left\langle {{\rm{u,v}}} \right\rangle = a + b\).

02

Modify the Cauchy Schwarz inequality

According to Cauchy Schwarz inequality, an inner product on a vector space \(V\) is a function that, to each pair of vectors \({\bf{u}}\) and \({\rm{v}}\) in \(V\), associates a real number \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle \)and satisfies the axiom, \(\left| {\left\langle {{\bf{u}},{\rm{v}}} \right\rangle } \right| \le \left\| {\rm{u}} \right\|\left\| {\rm{v}} \right\|\) for all \({\bf{u}}\) and \({\rm{v}}\)in \(V\).

Divide both sides of Cauchy Schwarz inequality by 2 and thence squaring both sides yieldthe following result:

\(\begin{array}{c}{\left\langle {{\rm{u,v}}} \right\rangle ^2} \le {\left\| {\rm{u}} \right\|^2}{\left\| {\rm{v}} \right\|^2}\\\frac{{{{\left\langle {{\rm{u,v}}} \right\rangle }^2}}}{4} \le \frac{{{{\left\| {\rm{u}} \right\|}^2}{{\left\| {\rm{v}} \right\|}^2}}}{4}\\{\left( {\frac{{\left\langle {{\rm{u,v}}} \right\rangle }}{2}} \right)^2} \le \frac{{{{\left\| {\rm{u}} \right\|}^2}{{\left\| {\rm{v}} \right\|}^2}}}{4}\end{array}\)

03

Use Cauchy Schwarz inequality

Plug the above obtained values into theinequality \({\left( {\frac{{\left\langle {{\rm{u,v}}} \right\rangle }}{2}} \right)^2} \le \frac{{{{\left\| {\rm{u}} \right\|}^2}{{\left\| {\rm{v}} \right\|}^2}}}{4}\), as follows:

\(\begin{array}{c}{\left( {\frac{{\left\langle {{\rm{u,v}}} \right\rangle }}{2}} \right)^2} \le \frac{{{{\left\| {\rm{u}} \right\|}^2}{{\left\| {\rm{v}} \right\|}^2}}}{4}\\{\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{\left( {{a^2} + {b^2}} \right)\left( 2 \right)}}{4}\\{\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\end{array}\)

Thus, the inequality\({\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\)is proved to be true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

6.\(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\),\({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{2}}\\{\bf{3}}\\{\bf{6}}\\{\bf{5}}\\{\bf{4}}\end{aligned}} \right)\)

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

4.\(y = \left[ {\begin{aligned}{\bf{6}}\\{\bf{3}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{3}}\\{\bf{4}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{4}}}\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right]\)

For a matrix program, the Gram–Schmidt process worksbetter with orthonormal vectors. Starting with \({x_1},......,{x_p}\) asin Theorem 11, let \(A = \left\{ {{x_1},......,{x_p}} \right\}\) . Suppose \(Q\) is an\(n \times k\)matrix whose columns form an orthonormal basis for

the subspace \({W_k}\) spanned by the first \(k\) columns of A. Thenfor \(x\) in \({\mathbb{R}^n}\), \(Q{Q^T}x\) is the orthogonal projection of x onto \({W_k}\) (Theorem 10 in Section 6.3). If \({x_{k + 1}}\) is the next column of \(A\),then equation (2) in the proof of Theorem 11 becomes

\({v_{k + 1}} = {x_{k + 1}} - Q\left( {{Q^T}T {x_{k + 1}}} \right)\)

(The parentheses above reduce the number of arithmeticoperations.) Let \({u_{k + 1}} = \frac{{{v_{k + 1}}}}{{\left\| {{v_{k + 1}}} \right\|}}\). The new \(Q\) for thenext step is \(\left( {\begin{aligned}{{}{}}Q&{{u_{k + 1}}}\end{aligned}} \right)\). Use this procedure to compute the\(QR\)factorization of the matrix in Exercise 24. Write thekeystrokes or commands you use.

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

5. \(\left( {\frac{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}} \right){\mathop{\rm v}\nolimits} \)

Given \(A = QR\) as in Theorem 12, describe how to find an orthogonal\(m \times m\)(square) matrix \({Q_1}\) and an invertible \(n \times n\) upper triangular matrix \(R\) such that

\(A = {Q_1}\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right]\)

The MATLAB qr command supplies this “full” QR factorization

when rank \(A = n\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free