Given \(A = QR\) as in Theorem 12, describe how to find an orthogonal\(m \times m\)(square) matrix \({Q_1}\) and an invertible \(n \times n\) upper triangular matrix \(R\) such that

\(A = {Q_1}\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right]\)

The MATLAB qr command supplies this “full” QR factorization

when rank \(A = n\).

Short Answer

Expert verified

We find the square matrix \({Q_1}\) by extending the column vectors of \(Q\) to the orthonormal basis of \({\mathbb{R}^m}\).

Step by step solution

01

\(QR\) factorization of a Matrix

A matrix with order \(m \times n\) can be written as the multiplication of an upper triangular matrix \(R\) and a matrix \(Q\) which is formed by applying the Gram–Schmidt orthogonalization process to the \({\rm{col}}\left( A \right)\).

The matrix \(R\) can be found by the formula \({Q^T}A = R\).

02

Finding the matrix \(R\) and \({Q_1}\)

Let \({q_1},{q_2}, \ldots ,{q_n}\) be the columns of the matrix \(Q\). Here \(n \le m\), since \(A\) is a \(m \times n\) matrix and it has linearly independent columns.

The columns of \(Q\) can be extended to an orthogonal basis \({\mathbb{R}^m}\).

Let \({v_1}\) be the 1st vector of the standard basis of \({\mathbb{R}^m}\) which is not in the set\({W_n} = {\rm{span}}\left\{ {{q_1},......,{q_n}} \right\}\).

Let \({u_1} = {v_1} - {\rm{pro}}{{\rm{j}}_{{W_n}}}{v_1}\) and let \({q_{n + 1}} = \frac{{{u_1}}}{{\left\| {{u_1}} \right\|}}\). Then \(\left\{ {{q_1},......,{q_n},{q_{n + 1}}} \right\}\) is an orthogonal basis for \(\)\({W_{n + 1}} = {\rm{span}}\left\{ {{q_1},......,{q_n},{q_{n + 1}}} \right\}\)

Now, again \({v_2}\)be the 1st vector of the standard basis of \({\mathbb{R}^m}\) which is not in the set \({W_{n + 1}} = {\rm{span}}\left\{ {{q_1},......,{q_n},{q_{n + 1}}} \right\}\).

Let \({u_2} = {v_2} - {\rm{pro}}{{\rm{j}}_{{W_{n + 1}}}}{v_2}\) and let \({q_{n + 2}} = \frac{{{u_2}}}{{\left\| {{u_2}} \right\|}}\). Then \(\left\{ {{q_1},......,{q_n},{q_{n + 1}},{q_{n + 2}}} \right\}\)is an orthogonal basis for\({W_{n + 2}} = {\rm{span}}\left\{ {{q_1},......,{q_n},{q_{n + 1}},{q_{n + 2}}} \right\}\).

Applying this process to get \(m - n\) such vectors, we get an orthogonal basis

\(\left\{ {{q_1},......,{q_n},{q_{n + 1}},...,{q_m}} \right\}\)for \({\mathbb{R}^m}\).

Let \({Q_0} = \left[ {\begin{aligned}{{}{r}}{{q_{n + 1}}}&.&.&.&.&{{q_m}}\end{aligned}} \right]\) and then let \({Q_1} = \left[ {\begin{aligned}{{}{}}Q&{{Q_0}}\end{aligned}} \right]\).

Then

\(\begin{aligned}{}{Q_1}\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right] &= \left[ {\begin{aligned}{{}{}}Q&{{Q_0}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right]\\ &= QR\\ &= A\end{aligned}\)

In this way, we can find \({Q_1}\) and the upper triangular matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the distance between \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0\\{ - 5}\\2\end{aligned}} \right)\) and \({\mathop{\rm z}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 4}\\{ - 1}\\8\end{aligned}} \right)\).

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

10.\[y = \left[ {\begin{aligned}3\\4\\5\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\0\\1\\1\end{aligned}} \right]\],\[{{\bf{u}}_3} = \left[ {\begin{aligned}0\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

9.\[y = \left[ {\begin{aligned}4\\3\\3\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\3\\1\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\0\\1\\1\end{aligned}} \right]\]

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

Let \(\overline x = \frac{1}{n}\left( {{x_1} + \cdots + {x_n}} \right)\), and \(\overline y = \frac{1}{n}\left( {{y_1} + \cdots + {y_n}} \right)\). Show that the least-squares line for the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) must pass through \(\left( {\overline x ,\overline y } \right)\). That is, show that \(\overline x \) and \(\overline y \) satisfies the linear equation \(\overline y = {\hat \beta _0} + {\hat \beta _1}\overline x \). (Hint: Derive this equation from the vector equation \({\bf{y}} = X{\bf{\hat \beta }} + \in \). Denote the first column of \(X\) by 1. Use the fact that the residual vector \( \in \) is orthogonal to the column space of \(X\) and hence is orthogonal to 1.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free