Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

Short Answer

Expert verified

The Cauchy-Schwartz inequality is true.

Step by step solution

01

Find the values \(\left\| {\bf{x}} \right\|\) and \(\left\| {\bf{y}} \right\|\)

Find the value of \(\left\| {\bf{x}} \right\|\).

\(\begin{aligned}\left\| {\bf{x}} \right\| &= \sqrt {\left\langle {{\bf{x}},{\bf{x}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( {3, - 2} \right),\left( { - 2,1} \right)} \right\rangle } \\ &= \sqrt {4\left( 3 \right)\left( 3 \right) + 5\left( { - 2} \right)\left( { - 2} \right)} \\ &= \sqrt {36 + 20} \\ &= \sqrt {56} \end{aligned}\)

Thus, the value of \(\left\| {\bf{x}} \right\|\) is \(\sqrt {56} \).

Find the value of \(\left\| {\bf{y}} \right\|\).

\(\begin{aligned}\left\| {\bf{y}} \right\| &= \sqrt {\left\langle {{\bf{y}},{\bf{y}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( { - 2,1} \right),\left( { - 2,1} \right)} \right\rangle } \\ &= \sqrt {4\left( { - 2} \right)\left( { - 2} \right) + 5\left( 1 \right)\left( 1 \right)} \\ &= \sqrt {21} \end{aligned}\)

Thus, the value of \(\left\| {\bf{y}} \right\|\) is \(\sqrt {21} \).

02

Find the inner product and \({\left\| {\bf{x}} \right\|^{\bf{2}}}{\left\| {\bf{y}} \right\|^{\bf{2}}}\)

The inner product \(\left\langle {{\bf{x}},{\bf{y}}} \right\rangle \)can be calculated as follows:

\(\begin{aligned}\left\langle {{\bf{x}},{\bf{y}}} \right\rangle &= \left\langle {\left( {3, - 2} \right),\left( { - 2,1} \right)} \right\rangle \\ &= 4\left( 3 \right)\left( { - 2} \right) + 5\left( { - 2} \right)\left( 1 \right)\\ &= - 34\end{aligned}\)

Find the value of \({\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2}\).

\(\begin{aligned}{\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2} &= 56 \times 21\\ &= 1176\end{aligned}\)

03

Check for Cauchy-Schwartz inequality

By the Cauchy-Schwartz inequality:

\(\begin{aligned}\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right| \le \left\| {\bf{x}} \right\|\left\| {\bf{y}} \right\|\\{\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2} \le {\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2}\\1156 < 1176\end{aligned}\)

Thus, the Cauchy-Schwartz inequality is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

a. If \(W = {\rm{span}}\left\{ {{x_1},{x_2},{x_3}} \right\}\) with \({x_1},{x_2},{x_3}\) linearly independent,

and if \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is an orthogonal set in \(W\) , then \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for \(W\) .

b. If \(x\) is not in a subspace \(W\) , then \(x - {\rm{pro}}{{\rm{j}}_W}x\) is not zero.

c. In a \(QR\) factorization, say \(A = QR\) (when \(A\) has linearly

independent columns), the columns of \(Q\) form an

orthonormal basis for the column space of \(A\).

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

6. \(\left( {\begin{aligned}{{}}3\\{ - 1}\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 5}\\9\\{ - 9}\\3\end{aligned}} \right)\)

In Exercises 9-12, find a unit vector in the direction of the given vector.

10. \(\left( {\begin{aligned}{*{20}{c}}{ - 6}\\4\\{ - 3}\end{aligned}} \right)\)

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1, and let \({\bf{x}} = \left( {{\bf{1}},{\bf{1}}} \right)\) and \({\bf{y}} = \left( {{\bf{5}}, - {\bf{1}}} \right)\).

a. Find\(\left\| {\bf{x}} \right\|\),\(\left\| {\bf{y}} \right\|\), and\({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).

b. Describe all vectors\(\left( {{z_{\bf{1}}},{z_{\bf{2}}}} \right)\), that are orthogonal to y.

In exercises 1-6, determine which sets of vectors are orthogonal.

  1. \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\4\\{ - 3}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}5\\2\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\{ - 4}\\{ - 7}\end{array}} \right]\)
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free