(M) Generate random vectors \(x\), \(y\), and \(v\) in \({\mathbb{R}^4}\) with integer

entries (and \(v \ne 0\)), and compute the quantities

\(\left( {\frac{{x \cdot v}}{{v \cdot v}}} \right)v,\left( {\frac{{y \cdot v}}{{v \cdot v}}} \right)v,\frac{{\left( {x + y} \right) \cdot v}}{{v \cdot v}}v,\frac{{\left( {10x} \right) \cdot v}}{{v \cdot v}}v\)

Repeat the computations with new random vectors x and

y. What do you conjecture about the mapping \(x \mapsto T\left( x \right) = \frac{{x \cdot v}}{{v \cdot v}}v\)

(for \(v \ne 0\))? Verify your conjecture algebraically.

Short Answer

Expert verified

\(T\) is a linear transformation and it is verified algebraically.

Step by step solution

01

Orthogonal set

A set of vectors \(\left\{ {{v_1},......,{v_n}} \right\}\) is said to be orthogonal if \({v_i} \cdot {v_j} = 0\), for \(i \ne j\).

02

Compute the required quantity

We have to generate the random vectors in \({\mathbb{R}^4}\) with integer entries and compute \(\left( {\frac{{x \cdot v}}{{v \cdot v}}} \right)v,\left( {\frac{{y \cdot v}}{{v \cdot v}}} \right)v,\frac{{\left( {x + y} \right) \cdot v}}{{v \cdot v}}v,\frac{{\left( {10x} \right) \cdot v}}{{v \cdot v}}v\)

The random matrix

>> x= randi((-5,5),4,1)

>> y= randi((-5,5),4,1)

>> v= randi((-5,5),4,1)

Compute the Entries:

>> p=(dot(x,v)/dot(v,v))*v

>>q= (dot(y,v)/dot(v,v))*v

>> r=(dot(x+y,v)/dot(v,v))*v

>>s= (dot(10*x,v)/dot(v,v))*v

>> p+q

>> 10*p

We find that:

\(p = \left( {\begin{aligned}{*{20}{c}}{ - 1.1429}\\{0.2857}\\0\\{ - 1.4286}\end{aligned}} \right)\)

\(q = \left( {\begin{aligned}{*{20}{c}}{0.4762}\\{ - 0.1190}\\0\\{0.5952}\end{aligned}} \right)\)

\(r = \left( {\begin{aligned}{*{20}{c}}{ - 0.6667}\\{0.1667}\\0\\{ - 0.8333}\end{aligned}} \right)\)

\(s = \left( {\begin{aligned}{*{20}{c}}{ - 11.4286}\\{2.8571}\\0\\{ - 14.2857}\end{aligned}} \right)\)

Also

\(p + q = \left( {\begin{aligned}{*{20}{c}}{ - 0.6667}\\{0.1667}\\0\\{ - 0.8333}\end{aligned}} \right) = r\)

\(10p = \left( {\begin{aligned}{*{20}{c}}{ - 11.4286}\\{2.8571}\\0\\{ - 14.2857}\end{aligned}} \right) = s\)

The mapping \({\bf{x}} \mapsto T\left( x \right)\) is a linear transformation.

03

Verify the obtained result algebraically

To check \(T\) is linear or not,

\(\begin{aligned}{c}T\left( {x + y} \right) = \frac{{\left( {x + y} \right) \cdot v}}{{v \cdot v}}v\\ = \frac{{x \cdot v + y \cdot v}}{{v \cdot v}}v\\ = \frac{{x \cdot v}}{{v \cdot v}}v + \frac{{y \cdot v}}{{v \cdot v}}v\\ = T\left( x \right) + T\left( y \right)\end{aligned}\)

and

\(\begin{aligned}{c}T\left( {cx} \right) &= \frac{{\left( {cx} \right) \cdot v}}{{v \cdot v}}v\\ &= c\frac{{x \cdot v}}{{v \cdot v}}v\\ &= cT\left( x \right)\end{aligned}\)

Hence, \(T\) is a linear transformation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

9.\[y = \left[ {\begin{aligned}4\\3\\3\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\3\\1\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}{ - 1}\\0\\1\\1\end{aligned}} \right]\]

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\)may be written in the form

\(\begin{aligned}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

16. Use a matrix inverse to solve the system of equations in (7) and thereby obtain formulas for \({\hat \beta _0}\) , and that appear in many statistics texts.

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

10. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{2}}\\{ - {\bf{1}}}&{\bf{4}}\\{\bf{1}}&{\bf{2}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{3}}\\{ - {\bf{1}}}\\{\bf{5}}\end{aligned}} \right]\)

Given \(A = QR\) as in Theorem 12, describe how to find an orthogonal\(m \times m\)(square) matrix \({Q_1}\) and an invertible \(n \times n\) upper triangular matrix \(R\) such that

\(A = {Q_1}\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right]\)

The MATLAB qr command supplies this “full” QR factorization

when rank \(A = n\).

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free