Exercise 3-8 refer to \({{\bf{P}}_{\bf{2}}}\) with the inner product given by evaluation at \( - {\bf{1}}\), 0, and 1. (See Example 2).

3. Compute \(\left\langle {p,q} \right\rangle \), where \(p\left( t \right) = {\bf{4}} + t\), \(q\left( t \right) = {\bf{5}} - {\bf{4}}{t^{\bf{2}}}\).

Short Answer

Expert verified

The inner product is 28.

Step by step solution

01

Find the values of polynomials

The values of polynomial \(p\left( t \right) = 4 + t\) are:

\(\begin{aligned}p\left( { - 1} \right) &= 4 - 1\\ &= 3\end{aligned}\)

\(\begin{aligned}p\left( 0 \right) &= 4 + 0\\ &= 4\end{aligned}\)

\(\begin{aligned}p\left( 1 \right) &= 4 + 1\\ &= 5\end{aligned}\)

The values of polynomial \(q\left( t \right) = 5 - 4{t^2}\) are:

\(\begin{aligned}q\left( { - 1} \right) &= 5 - 4{\left( { - 1} \right)^2}\\ &= 5 - 4\\ &= 1\end{aligned}\)

\(\begin{aligned}q\left( 0 \right) &= 5 - 4{\left( 0 \right)^2}\\ &= 5\end{aligned}\)

\(\begin{aligned}q\left( 1 \right) &= 5 - 4{\left( 1 \right)^2}\\ &= 5 - 4\\ &= 1\end{aligned}\)

02

Find the value of inner product

The inner product for \(\left\langle {p,q} \right\rangle \) is defined as:

\(\left\langle {p,q} \right\rangle = p\left( {{t_0}} \right)q\left( {{t_0}} \right) + p\left( {{t_1}} \right)q\left( {{t_1}} \right) + p\left( {{t_2}} \right)q\left( {{t_2}} \right)\)

Substitute \({t_0} = - 1\), \({t_1} = 0\) and \({t_2} = 1\).

\(\begin{aligned}\left\langle {p,q} \right\rangle &= p\left( { - 1} \right)q\left( { - 1} \right) + p\left( 0 \right)q\left( 0 \right) + p\left( 1 \right)q\left( 1 \right)\\ &= \left( 3 \right)\left( 1 \right) + \left( 4 \right)\left( 5 \right) + \left( 5 \right)\left( 1 \right)\\ &= 3 + 20 + 5\\ &= 28\end{aligned}\)

Thus, the inner product is 28.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,{\rm{ }}{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

Use the Gram–Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

10.\[y = \left[ {\begin{aligned}3\\4\\5\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\0\\1\\1\end{aligned}} \right]\],\[{{\bf{u}}_3} = \left[ {\begin{aligned}0\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

6. \(\left( {\begin{aligned}{{}}3\\{ - 1}\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 5}\\9\\{ - 9}\\3\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free