Question: In exercises 7-10, show that \(\left\{ {{u_1},{u_2}} \right\}\) or \(\left\{ {{u_1},{u_2},{u_3}} \right\}\) is an orthogonal basis for \({\mathbb{R}^2}\) or \({\mathbb{R}^3}\), respectively. Then express \(x\) as a linear combination of the \(u\)’s.

10. \({u_1} = \left( {\begin{array}{*{20}{c}}3\\{ - 3}\\0\end{array}} \right)\), \({u_2} = \left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\end{array}} \right)\), \({u_3} = \left( {\begin{array}{*{20}{c}}1\\1\\4\end{array}} \right)\) and \(x = \left( {\begin{array}{*{20}{c}}5\\{ - 3}\\1\end{array}} \right)\)

Short Answer

Expert verified

The required linear combination is, \(x = \frac{4}{3}{u_1} + \frac{1}{3}{u_2} + \frac{1}{3}{u_3}\).

Step by step solution

01

Linear combination definition

Let the set of vectors \({u_1},.....,{u_p}\) be an orthogonal basis for a subspace \(W\) of \({\mathbb{R}^n}\) and the linear combination is given by \(y = {c_1}{u_1} + ..... + {c_p}{u_p}\) , then the weights in the linear combination are given as \({c_j} = \frac{{y \cdot {u_j}}}{{{u_j} \cdot {u_j}}}\), for each \(y\) in \(W\).

02

Check for orthogonality of given vectors

First, find \({u_1} \cdot {u_2}\):

\(\begin{array}{c}{u_1} \cdot {u_2} = \left( 3 \right)\left( 2 \right) + \left( { - 3} \right)\left( 2 \right) + \left( 0 \right)\left( { - 1} \right)\\ = 6 - 6 - 0\\ = 0\end{array}\)

Now, find \({u_2} \cdot {u_3}\):

\(\begin{array}{c}{u_2} \cdot {u_3} = \left( 2 \right)\left( 1 \right) + \left( 2 \right)\left( 1 \right) + \left( { - 1} \right)\left( 4 \right)\\ = 2 + 2 - 4\\ = 0\end{array}\)

And find \({u_1} \cdot {u_3}\):

\(\begin{array}{c}{u_1} \cdot {u_3} = \left( 3 \right)\left( 1 \right) + \left( { - 3} \right)\left( 1 \right) + \left( 0 \right)\left( 4 \right)\\ = 3 - 3 + 0\\ = 0\end{array}\)

Hence, all vectors are orthogonal to each other as the vectors are non-zero and linearly independent. Therefore, the given set form a basis for \({\mathbb{R}^3}\).

03

Express \(x\) as a linear combination

The vector\(x\)can be expressed as a linear combination as follows:

\(\begin{array}{c}x = \left( {\frac{{x \cdot {u_1}}}{{{u_1} \cdot {u_1}}}} \right){u_1} + \left( {\frac{{x \cdot {u_2}}}{{{u_2} \cdot {u_2}}}} \right){u_2} + \left( {\frac{{x \cdot {u_3}}}{{{u_3} \cdot {u_3}}}} \right){u_3}\\ = \left( {\frac{{\left( 5 \right)\left( 3 \right) + \left( { - 3} \right)\left( { - 3} \right) + \left( 1 \right)\left( 0 \right)}}{{\left( 3 \right)\left( 3 \right) + \left( { - 3} \right)\left( { - 3} \right) + \left( 0 \right)\left( 0 \right)}}} \right){u_1} + \left( {\frac{{\left( 5 \right)\left( 2 \right) + \left( { - 3} \right)\left( 2 \right) + \left( 1 \right)\left( { - 1} \right)}}{{\left( 2 \right)\left( 2 \right) + \left( 2 \right)\left( 2 \right) + \left( { - 1} \right)\left( { - 1} \right)}}} \right){u_2} + \left( {\frac{{\left( 5 \right)\left( 1 \right) + \left( { - 3} \right)\left( 1 \right) + \left( 1 \right)\left( 4 \right)}}{{\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right) + \left( 4 \right)\left( 4 \right)}}} \right){u_3}\\ = \left( {\frac{{15 + 9 + 0}}{{9 + 9 + 0}}} \right){u_1} + \left( {\frac{{10 - 6 - 1}}{{4 + 4 + 1}}} \right){u_2} + \left( {\frac{{5 - 3 + 4}}{{1 + 1 + 16}}} \right){u_3}\\ = \left( {\frac{{24}}{{18}}} \right){u_1} + \left( {\frac{3}{9}} \right){u_2} + \left( {\frac{6}{{18}}} \right){u_3}\,\\ = \frac{4}{3}{u_1} + \frac{1}{3}{u_2} + \frac{1}{3}{u_3}\end{array}\)

Hence, \(x = \frac{4}{3}{u_1} + \frac{1}{3}{u_2} + \frac{1}{3}{u_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13 and 14, the columns of \(Q\) were obtained by applying the Gram Schmidt process to the columns of \(A\). Find anupper triangular matrix \(R\) such that \(A = QR\). Check your work.

14.\(A = \left( {\begin{aligned}{{}{r}}{ - 2}&3\\5&7\\2&{ - 2}\\4&6\end{aligned}} \right)\), \(Q = \left( {\begin{aligned}{{}{r}}{\frac{{ - 2}}{7}}&{\frac{5}{7}}\\{\frac{5}{7}}&{\frac{2}{7}}\\{\frac{2}{7}}&{\frac{{ - 4}}{7}}\\{\frac{4}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

Show that if \(U\) is an orthogonal matrix, then any real eigenvalue of \(U\) must be \( \pm 1\).

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set. Verify the following equality by induction, beginning with \(p = 2\). If \({\bf{x}} = {c_1}{{\bf{v}}_1} + \ldots + {c_p}{{\bf{v}}_p}\), then

\({\left\| {\bf{x}} \right\|^2} = {\left| {{c_1}} \right|^2} + {\left| {{c_2}} \right|^2} + \ldots + {\left| {{c_p}} \right|^2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free