Chapter 6: Q6.2-10E (page 331)
Question: In exercises 7-10, show that \(\left\{ {{u_1},{u_2}} \right\}\) or \(\left\{ {{u_1},{u_2},{u_3}} \right\}\) is an orthogonal basis for \({\mathbb{R}^2}\) or \({\mathbb{R}^3}\), respectively. Then express \(x\) as a linear combination of the \(u\)’s.
10. \({u_1} = \left( {\begin{array}{*{20}{c}}3\\{ - 3}\\0\end{array}} \right)\), \({u_2} = \left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\end{array}} \right)\), \({u_3} = \left( {\begin{array}{*{20}{c}}1\\1\\4\end{array}} \right)\) and \(x = \left( {\begin{array}{*{20}{c}}5\\{ - 3}\\1\end{array}} \right)\)
Short Answer
The required linear combination is, \(x = \frac{4}{3}{u_1} + \frac{1}{3}{u_2} + \frac{1}{3}{u_3}\).