Chapter 6: Q6.2-17E (page 331)
Question: In Exercises 17-22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.
17. \(\left( {\begin{array}{*{20}{c}}{\frac{1}{3}}\\{\frac{1}{3}}\\{\frac{1}{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}}\\0\\{\frac{1}{2}}\end{array}} \right)\)
Short Answer
The set of vectors \(\left\{ {{\bf{u}},{\bf{v}}} \right\}\) is not orthonormal.
The orthonormal set is \(\left\{ {\frac{{\bf{u}}}{{\left\| {\bf{u}} \right\|}},\frac{{\bf{v}}}{{\left\| {\bf{v}} \right\|}}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{3}}\\{\frac{{\sqrt 3 }}{3}}\\{\frac{{\sqrt 3 }}{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - \frac{{\sqrt 2 }}{2}}\\0\\{\frac{{\sqrt 2 }}{2}}\end{array}} \right)} \right\}\).