Question: In Exercises 17-22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

21. \(\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{\frac{{ - 1}}{{\sqrt {20} }}}\\{\frac{{ - 1}}{{\sqrt {20} }}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\)

Short Answer

Expert verified

The set of vectors \(\left\{ {{\bf{u}},{\bf{v}},{\bf{w}}} \right\}\) is orthonormal.

Step by step solution

01

Definition of orthonormal sets

A set of vectors \(\left\{ {{{\mathop{\rm u}\nolimits} _1},{{\mathop{\rm u}\nolimits} _2}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) is called anorthonormal setwhen it is an orthogonal set of unit vectors.

02

Check whether the set of vectors are orthogonal

Consider that \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right),{\rm{ }}{\bf{v}} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right)\), and \({\bf{w}} = \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\).

Check whether the set of the vector is orthogonal, as shown below:

\(\begin{array}{c}{\bf{u}} \cdot {\bf{v}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right)\\ = \left( {\frac{1}{{\sqrt {10} }}} \right)\left( {\frac{3}{{\sqrt {10} }}} \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt {20} }}} \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt {20} }}} \right)\\ = \frac{3}{{10}} - \frac{3}{{20}} - \frac{3}{{20}}\\ = 0\end{array}\)

\(\begin{array}{c}{\bf{u}} \cdot {\bf{w}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\\ = \left( {\frac{1}{{\sqrt {10} }}} \right)\left( 0 \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt 2 }}} \right) + \frac{3}{{\sqrt {20} }}\left( {\frac{1}{{\sqrt 2 }}} \right)\\ = - \frac{{3\sqrt {10} }}{{\sqrt {20} }} + \frac{{3\sqrt {10} }}{{\sqrt {20} }}\\ = 0\end{array}\)

And,

\(\begin{array}{c}{\bf{v}} \cdot {\bf{w}} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\\ = \left( {\frac{3}{{\sqrt {10} }}} \right)\left( 0 \right) - \frac{1}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt 2 }}} \right) - \frac{1}{{\sqrt {20} }}\left( {\frac{1}{{\sqrt 2 }}} \right)\\ = \frac{{\sqrt {10} }}{{\sqrt {20} }} - \frac{{\sqrt {10} }}{{\sqrt {20} }}\\ = 0\end{array}\)

It is observed that \(\left\{ {{\bf{u}},{\bf{v}},{\bf{w}}} \right\}\) is an orthogonal set because \({\bf{u}} \cdot {\bf{v}} = {\bf{u}} \cdot {\bf{w}} = {\bf{v}} \cdot {\bf{w}} = 0\).

03

Check whether the set of vectors is orthonormal

Check whether the set of vectors is orthonormal as shown below:

\(\begin{array}{c}{\left\| {\bf{u}} \right\|^2} = {\bf{u}} \cdot {\bf{u}}\\ = {\left( {\frac{1}{{\sqrt {10} }}} \right)^2} + {\left( {\frac{3}{{\sqrt {20} }}} \right)^2} + {\left( {\frac{3}{{\sqrt {20} }}} \right)^2}\\ = \left( {\frac{1}{{10}}} \right) + \left( {\frac{9}{{20}}} \right) + \left( {\frac{9}{{20}}} \right)\\ = 1\end{array}\)

\(\begin{array}{c}{\left\| {\bf{v}} \right\|^2} = {\bf{v}} \cdot {\bf{v}}\\ = {\left( {\frac{3}{{\sqrt {10} }}} \right)^2} + {\left( { - \frac{1}{{\sqrt {20} }}} \right)^2} + {\left( { - \frac{1}{{\sqrt {20} }}} \right)^2}\\ = \frac{9}{{10}} + \frac{1}{{20}} + \frac{1}{{20}}\\ = 1\end{array}\)

And,

\(\begin{array}{c}{\left\| {\bf{w}} \right\|^2} = {\bf{w}} \cdot {\bf{w}}\\ = {\left( 0 \right)^2} + {\left( { - \frac{1}{{\sqrt 2 }}} \right)^2} + {\left( {\frac{1}{{\sqrt 2 }}} \right)^2}\\ = \frac{1}{2} + \frac{1}{2}\\ = 1\end{array}\)

It is observed that \(\left\{ {{\bf{u}},{\bf{v}},{\bf{w}}} \right\}\) is an orthonormal set.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

4.\(y = \left[ {\begin{aligned}{\bf{6}}\\{\bf{3}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{3}}\\{\bf{4}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{4}}}\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right]\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

3. \(\left( {\begin{aligned}{{}{}}2\\{ - 5}\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}4\\{ - 1}\\2\end{aligned}} \right)\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

11. \(\left( {\begin{aligned}{{}{}}1&2&5\\{ - 1}&1&{ - 4}\\{ - 1}&4&{ - 3}\\1&{ - 4}&7\\1&2&1\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free