Consider that \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right),{\rm{ }}{\bf{v}} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right)\), and \({\bf{w}} = \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\).
Check whether the set of the vector is orthogonal, as shown below:
\(\begin{array}{c}{\bf{u}} \cdot {\bf{v}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right)\\ = \left( {\frac{1}{{\sqrt {10} }}} \right)\left( {\frac{3}{{\sqrt {10} }}} \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt {20} }}} \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt {20} }}} \right)\\ = \frac{3}{{10}} - \frac{3}{{20}} - \frac{3}{{20}}\\ = 0\end{array}\)
\(\begin{array}{c}{\bf{u}} \cdot {\bf{w}} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt {10} }}}\\{\frac{3}{{\sqrt {20} }}}\\{\frac{3}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\\ = \left( {\frac{1}{{\sqrt {10} }}} \right)\left( 0 \right) + \frac{3}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt 2 }}} \right) + \frac{3}{{\sqrt {20} }}\left( {\frac{1}{{\sqrt 2 }}} \right)\\ = - \frac{{3\sqrt {10} }}{{\sqrt {20} }} + \frac{{3\sqrt {10} }}{{\sqrt {20} }}\\ = 0\end{array}\)
And,
\(\begin{array}{c}{\bf{v}} \cdot {\bf{w}} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{\sqrt {10} }}}\\{ - \frac{1}{{\sqrt {20} }}}\\{ - \frac{1}{{\sqrt {20} }}}\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}0\\{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{array}} \right)\\ = \left( {\frac{3}{{\sqrt {10} }}} \right)\left( 0 \right) - \frac{1}{{\sqrt {20} }}\left( { - \frac{1}{{\sqrt 2 }}} \right) - \frac{1}{{\sqrt {20} }}\left( {\frac{1}{{\sqrt 2 }}} \right)\\ = \frac{{\sqrt {10} }}{{\sqrt {20} }} - \frac{{\sqrt {10} }}{{\sqrt {20} }}\\ = 0\end{array}\)
It is observed that \(\left\{ {{\bf{u}},{\bf{v}},{\bf{w}}} \right\}\) is an orthogonal set because \({\bf{u}} \cdot {\bf{v}} = {\bf{u}} \cdot {\bf{w}} = {\bf{v}} \cdot {\bf{w}} = 0\).