Chapter 6: Q6.2-24E (page 331)
24. Question: In Exercises 23 and 24, all vectors are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.
- Not every orthogonal set in \({\mathbb{R}^n}\) is linearly independent.
- If a set \(S = \left\{ {{{\mathop{\rm u}\nolimits} _1}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) has the property that \({{\mathop{\rm u}\nolimits} _i} \cdot {{\mathop{\rm u}\nolimits} _j} = 0\) whenever \(i \ne j\), then \(S\) is an orthonormal set.
- If the columns of a \(m \times n\) matrix A are orthonormal, then the linear mapping \({\mathop{\rm x}\nolimits} \mapsto A{\mathop{\rm x}\nolimits} \) preserves lengths.
- The orthogonal projection of y onto v is the same as the orthogonal projection of y onto \(c{\mathop{\rm v}\nolimits} \) whenever \(c \ne 0\).
- An orthogonal matrix is invertible.
Short Answer
- The given statement is true.
- The given statement is false.
- The given statement is true.
- The given statement is true.
- The given statement is true.