Question 25: Prove Theorem 7. (Hint: For (a), compute \({\left\| {U{\mathop{\rm x}\nolimits} } \right\|^2}\), or prove (b) first.)

Short Answer

Expert verified

It is proved that \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\).

Step by step solution

01

Write Theorem 7

Theorem 7states that consider that \(U\) as an \(m \times n\) matrix with orthonormal columns and assume that x and y are in \({\mathbb{R}^n}\). Then,

  1. \(\left\| {U{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\)
  2. \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\)
  3. \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = 0\) such that if \({\bf{x}} \cdot {\bf{y}} = 0\).
02

Prove part (b) of theorem 7

Prove of \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) is shown below:

\(\begin{array}{c}\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\left( {U{\bf{x}}} \right)^T}{\left( {U{\bf{y}}} \right)^T}\\ = {{\bf{x}}^T}{U^T}U{\bf{y}}\\ = {{\bf{x}}^T}{\bf{y}}\\ = {\bf{x}} \cdot {\bf{y}}\end{array}\)

Here, \({U^T}U = I\).

If \({\bf{y}} = {\bf{x}}\) in part (b) then;

\(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{x}}} \right) = {\bf{x}} \cdot {\bf{x}}\)

It signifies part (a).

Part (c) immediately comes after part (a).

Thus, it is proved that \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({{\bf{u}}_1},......,{{\bf{u}}_p}\) be an orthogonal basis for a subspace \(W\) of \({\mathbb{R}^n}\), and let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be defined by \(T\left( x \right) = {\rm{pro}}{{\rm{j}}_W}x\). Show that \(T\) is a linear transformation.

In exercises 1-6, determine which sets of vectors are orthogonal.

  1. \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\4\\{ - 3}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}5\\2\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\{ - 4}\\{ - 7}\end{array}} \right]\)

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

In Exercises 9-12 find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

12. \(A = \left[ {\begin{array}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{ - {\bf{1}}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}\\{ - {\bf{1}}}&{\bf{1}}&{ - {\bf{1}}}\end{array}} \right]\), \({\bf{b}} = \left( {\begin{array}{{}{}}{\bf{2}}\\{\bf{5}}\\{\bf{6}}\\{\bf{6}}\end{array}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free