Prove of \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) is shown below:
\(\begin{array}{c}\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\left( {U{\bf{x}}} \right)^T}{\left( {U{\bf{y}}} \right)^T}\\ = {{\bf{x}}^T}{U^T}U{\bf{y}}\\ = {{\bf{x}}^T}{\bf{y}}\\ = {\bf{x}} \cdot {\bf{y}}\end{array}\)
Here, \({U^T}U = I\).
If \({\bf{y}} = {\bf{x}}\) in part (b) then;
\(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{x}}} \right) = {\bf{x}} \cdot {\bf{x}}\)
It signifies part (a).
Part (c) immediately comes after part (a).
Thus, it is proved that \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\).