Apply an inner product for the transformation \(T\left( {c{\bf{x}} + d{\bf{y}}} \right)\) by using the transformation \(T\left( {\bf{x}} \right) = \frac{{{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\).
\(\begin{array}{c}T\left( {c{\bf{x}} + d{\bf{y}}} \right) = \frac{{\left( {c{\bf{x}} + d{\bf{y}}} \right) \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = \frac{{c{\bf{x}} \cdot {\bf{u}} + d{\bf{y}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = \frac{{c{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}} + \frac{{d{\bf{y}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = cT\left( {\bf{x}} \right) + dT\left( {\bf{y}} \right)\end{array}\)
Therefore, the mapping \({\bf{x}} \mapsto {\rm{pro}}{{\rm{j}}_L}{\bf{x}}\) is a linear transformation.