Question: Given \({\bf{u}} \ne {\bf{0}}\) in \({\mathbb{R}^n}\), let \(L = {\bf{Span}}\left\{ {\bf{u}} \right\}\). For y in \({\mathbb{R}^n}\), the reflection of y in L is the point \({\bf{ref}}{{\bf{l}}_L}y\) defined by

\({\bf{ref}}{{\bf{l}}_L}{\bf{y}} = {\bf{2}} \cdot {\bf{pro}}{{\bf{j}}_L}{\bf{y}} - {\bf{y}}\)

See the figure, which shows that \({\bf{ref}}{{\bf{l}}_L}{\bf{y}}\) is the sum of \({\bf{\hat y}} = {\bf{pro}}{{\bf{j}}_L}{\bf{y}}\) and \(\widehat {\bf{y}} - {\bf{y}}\). Show that the mapping \({\bf{y}} \mapsto {\bf{ref}}{{\bf{l}}_L}{\bf{y}}\) is a linear transformation.

Short Answer

Expert verified

It is proved that the mapping \({\bf{y}} \mapsto {\rm{ref}}{{\rm{l}}_L}{\bf{y}}\) is a linear transformation.

Step by step solution

01

Write the projection for x

The projection for x is given by;

\({\rm{pro}}{{\rm{j}}_L}{\bf{x}} = \frac{{{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\)

The transformation becomes:

\(\begin{array}{c}T\left( {\bf{x}} \right) = {\rm{pro}}{{\rm{j}}_L}{\bf{x}}\\ = \frac{{{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\end{array}\)

02

Use the inner product for the transformation

Apply an inner product for the transformation \(T\left( {\bf{x}} \right)\) by using the transformation \(T\left( {\bf{x}} \right) = \frac{{{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\).

\(\begin{array}{c}T\left( {a{\bf{x}} + b{\bf{y}}} \right) = \frac{{\left( {a{\bf{x}} + b{\bf{y}}} \right) \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = \frac{{b{\bf{x}} \cdot {\bf{u}} + b{\bf{y}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = \frac{{a{\bf{x}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}} + \frac{{b{\bf{y}} \cdot {\bf{u}}}}{{{\bf{u}} \cdot {\bf{u}}}}{\bf{u}}\\ = aT\left( {\bf{x}} \right) + bT\left( {\bf{y}} \right)\end{array}\)

Therefore, \(T\left( {\bf{x}} \right)\) is a linear transformation.

03

Check whether \({T_{\bf{1}}}\) is a linear transformation

Let, \({T_1}\left( {\bf{y}} \right) = {\rm{ref}}{{\rm{l}}_L}{\bf{y}} = 2 \cdot {\rm{pro}}{{\rm{j}}_L}{\bf{y}} - {\bf{y}}\).

Check inner product for the transformation \({T_1}\) as shown below:

\(\begin{array}{c}{T_1}\left( {c{\bf{y}} + d{\bf{z}}} \right) = {\rm{re}}{{\rm{f}}_L}\left( {c{\bf{y}} + d{\bf{z}}} \right)\\ = 2 \cdot {\rm{pro}}{{\rm{j}}_L}\left( {c{\bf{y}} + d{\bf{z}}} \right) - \left( {c{\bf{y}} + d{\bf{z}}} \right)\\ = 2 \cdot \left( {\left( c \right){\rm{pro}}{{\rm{j}}_L}{\bf{y}} + \left( d \right){\rm{pro}}{{\rm{j}}_L}{\bf{z}}} \right) - c{\bf{y}} - d{\bf{z}}\\ = 2c \cdot \left( {{\rm{pro}}{{\rm{j}}_L}{\bf{y}}} \right) + 2d \cdot \left( {{\rm{pro}}{{\rm{j}}_L}{\bf{z}}} \right) - c{\bf{y}} - d{\bf{z}}\\ = c\left( {2 \cdot {\rm{pro}}{{\rm{j}}_L}{\bf{y}} - {\bf{y}}} \right) + d\left( {2 \cdot {\rm{pro}}{{\rm{j}}_L}{\bf{z}} - {\bf{z}}} \right)\\ = c\left( {{\rm{ref}}{{\rm{l}}_L}{\bf{y}}} \right) + d\left( {{\rm{ref}}{{\rm{l}}_L}{\bf{z}} - {\bf{z}}} \right)\\ = c{T_1}\left( {\bf{y}} \right) + d{T_1}\left( {\bf{z}} \right)\end{array}\)

The above equation shows that \({T_1}\) is a linear transformation.

Thus, it is proved that \({\bf{y}} \mapsto {\rm{ref}}{{\rm{l}}_L}{\bf{y}}\) is a linear transformation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a \(QR\) factorization of the matrix in Exercise 12.

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\) may be written in the form

\(\begin{aligned}{c}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

Derive the normal equations (7) from the matrix form given in this section.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

a. Rewrite the data in Example 1 with new \(x\)-coordinates in mean deviation form. Let \(X\) be the associated design matrix. Why are the columns of \(X\) orthogonal?

b. Write the normal equations for the data in part (a), and solve them to find the least-squares line, \(y = {\beta _0} + {\beta _1}x*\), where \(x* = x - 5.5\).

Use the Gram–Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free