Chapter 6: Q6.3-20E (page 331)
Question 20: Let \({{\mathop{\rm u}\nolimits} _1}\) and \({{\mathop{\rm u}\nolimits} _2}\) be as in Exercise 19, and let \({{\mathop{\rm u}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\). It can be shown that \({{\mathop{\rm u}\nolimits} _4}\) is not in the subspace \(W\) spanned by \({{\mathop{\rm u}\nolimits} _1}\), and \({{\mathop{\rm u}\nolimits} _2}\). Use this fact to construct a nonzero vector v in \({\mathbb{R}^3}\) that is orthogonal to \({{\mathop{\rm u}\nolimits} _1}\), and \({{\mathop{\rm u}\nolimits} _2}\).
Short Answer
The vector \({\bf{v}}\) is \({\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\{\frac{4}{5}}\\{\frac{2}{5}}\end{array}} \right)\).