Question 23: Let \(A\) be an \(m \times n\). Prove that every vector x in \({\mathbb{R}^n}\) can be written in the form \({\mathop{\rm x}\nolimits} = {\mathop{\rm p}\nolimits} + {\mathop{\rm u}\nolimits} \), where \({\mathop{\rm p}\nolimits} \) is in Row A and u is in \({\mathop{\rm Nul}\nolimits} A\). Also, show that if the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) is consistent, then there is a unique p in Row A such that \(A{\mathop{\rm p}\nolimits} = {\mathop{\rm b}\nolimits} \).

Short Answer

Expert verified

It is proved that there is a unique \({\bf{p}}\) in \({\mathop{\rm Row}\nolimits} A\) such that \(A{\mathop{\rm p}\nolimits} = {\mathop{\rm b}\nolimits} \).

Step by step solution

01

The Orthogonal Decomposition Theorem

Suppose that \(W\) is a subspace of \({\mathbb{R}^n}\). Then, each \({\bf{y}}\) in \({\mathbb{R}^n}\) can be expressed uniquely in the form:

\({\bf{y}} = \widehat {\bf{y}} + {\bf{z}}\) … (1)

With \(\widehat {\bf{y}}\) is in \(W\) and \({\bf{z}}\) is in \({W^ \bot }\). In particular, when \(\left\{ {{{\mathop{\rm u}\nolimits} _1}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) is anorthogonal basis of \(W\), then;

\(\widehat {\bf{y}} = \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{{{\mathop{\rm u}\nolimits} _1} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{\mathop{\rm u}\nolimits} _1} + \ldots + \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{{{\mathop{\rm u}\nolimits} _p} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{\mathop{\rm u}\nolimits} _p}\) … (2)

And, \({\bf{z}} = {\bf{y}} - \widehat {\bf{y}}\).

02

Show that if the equation \(A{\mathop{\rm x}\nolimits}  = {\mathop{\rm b}\nolimits} \) is consistent, then there is a unique p in Row A

Theorem 3states that consider A as a \(m \times n\) matrix, and thenull spaceofA is theorthogonal complement of the row space ofA.The orthogonal complement of the column space of A is known as thenull spaceof \({A^T}\).

\({\left( {{\mathop{\rm Row}\nolimits} A} \right)^ \bot } = {\mathop{\rm Nul}\nolimits} A\) and \({\left( {{\mathop{\rm Col}\nolimits} A} \right)^ \bot } = {\mathop{\rm Nul}\nolimits} {A^T}\)

According to the Orthogonal Decomposition Theorem, every \({\bf{x}}\) in \({\mathbb{R}^n}\) can be expressed uniquely as \({\bf{x}} = {\bf{p}} + {\bf{u}}\), where \({\bf{p}}\) in \({\mathop{\rm Row}\nolimits} A\), and \({\bf{u}}\) is in \({\left( {{\mathop{\rm Row}\nolimits} A} \right)^ \bot }\). According to theorem 3, \({\left( {{\mathop{\rm Row}\nolimits} A} \right)^ \bot } = {\mathop{\rm Nul}\nolimits} A\), therefore, \({\bf{u}}\) is in \({\mathop{\rm Nul}\nolimits} A\).

Assume that \(A{\mathop{\rm x}\nolimits} = b\) is consistent. Consider \({\bf{x}}\) as a solution and write \({\bf{x}} = {\bf{p}} + {\bf{u}}\) as shown before. Then;

\(\begin{array}{c}A{\mathop{\rm p}\nolimits} = A\left( {{\mathop{\rm x}\nolimits} - {\mathop{\rm u}\nolimits} } \right)\\ = A{\mathop{\rm x}\nolimits} - A{\mathop{\rm u}\nolimits} \\ = {\mathop{\rm b}\nolimits} - 0\\ = {\mathop{\rm b}\nolimits} \end{array}\)

Therefore, the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) contains at least one solution p in \({\mathop{\rm Row}\nolimits} A\).

Furthermore, assume that \({\bf{p}}\) and \({{\bf{p}}_1}\) are both in \({\mathop{\rm Row}\nolimits} A\) and both satisfied \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \). Therefore, \({\bf{p}} - {{\bf{p}}_1}\) is in \({\mathop{\rm Nul}\nolimits} A = {\left( {{\mathop{\rm Row}\nolimits} A} \right)^ \bot }\), because \(A\left( {{\bf{p}} - {{\bf{p}}_1}} \right) = A{\bf{p}} - A{{\bf{p}}_1} = {\mathop{\rm b}\nolimits} - {\mathop{\rm b}\nolimits} = 0\).

The equation \({\bf{p}} = {{\bf{p}}_1} + \left( {{\bf{p}} - {{\bf{p}}_1}} \right)\) and \({\bf{p}} = {\bf{p}} + 0\) are decomposed into a sum of a vector in \({\mathop{\rm Row}\nolimits} A\) and a vector in \({\left( {{\mathop{\rm Row}\nolimits} A} \right)^ \bot }\). According to the uniqueness of the orthogonal decomposition, \({\bf{p}} = {{\bf{p}}_1}\) and \({\bf{p}}\) is unique.

Thus, it is proved that there is a unique \({\bf{p}}\) in \({\mathop{\rm Row}\nolimits} A\) such that \(A{\mathop{\rm p}\nolimits} = {\mathop{\rm b}\nolimits} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the distance between \({\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{10}\\{ - 3}\end{aligned}} \right)\) and \({\mathop{\rm y}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\{ - 5}\end{aligned}} \right)\).

Find a \(QR\) factorization of the matrix in Exercise 11.

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

a. If \(W = {\rm{span}}\left\{ {{x_1},{x_2},{x_3}} \right\}\) with \({x_1},{x_2},{x_3}\) linearly independent,

and if \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is an orthogonal set in \(W\) , then \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for \(W\) .

b. If \(x\) is not in a subspace \(W\) , then \(x - {\rm{pro}}{{\rm{j}}_W}x\) is not zero.

c. In a \(QR\) factorization, say \(A = QR\) (when \(A\) has linearly

independent columns), the columns of \(Q\) form an

orthonormal basis for the column space of \(A\).

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free