Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

Short Answer

Expert verified

The value is \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\).

Step by step solution

01

Inner product

Consider \({\mathop{\rm u}\nolimits} ,v,\) and \({\mathop{\rm w}\nolimits} \) as the vectors in \({\mathbb{R}^n}\) and consider \(c\) as the scalar. Then

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} = {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} \)
  2. \(\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) \cdot {\mathop{\rm w}\nolimits} = {\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} + {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm w}\nolimits} \)
  3. \(\left( {c{\mathop{\rm u}\nolimits} } \right) \cdot {\mathop{\rm v}\nolimits} = c\left( {{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \right) = {\mathop{\rm u}\nolimits} \cdot \left( {c{\mathop{\rm v}\nolimits} } \right)\)
  4. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} \ge 0\)and \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} = 0\) if and only if \({\mathop{\rm u}\nolimits} = 0\).
02

Compute

\(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

It is given that \({\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\).

Evaluate \({\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} \) and \({\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} &= \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right)\\ &= 6\left( 3 \right) + \left( { - 2} \right)\left( { - 1} \right) + 3\left( { - 5} \right)\\ &= 18 + 2 - 15\\ &= 5\end{aligned}\)

\(\begin{aligned}{c}{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} &= \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\\ &= {\left( 6 \right)^2} + {\left( { - 2} \right)^2} + {3^2}\\ &= 36 + 4 + 9\\ &= 49\end{aligned}\)

Compute \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \frac{5}{{49}}\left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\end{aligned}\)

Thus, the value is \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13 and 14, the columns of \(Q\) were obtained by applying the Gram Schmidt process to the columns of \(A\). Find anupper triangular matrix \(R\) such that \(A = QR\). Check your work.

14.\(A = \left( {\begin{aligned}{{}{r}}{ - 2}&3\\5&7\\2&{ - 2}\\4&6\end{aligned}} \right)\), \(Q = \left( {\begin{aligned}{{}{r}}{\frac{{ - 2}}{7}}&{\frac{5}{7}}\\{\frac{5}{7}}&{\frac{2}{7}}\\{\frac{2}{7}}&{\frac{{ - 4}}{7}}\\{\frac{4}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( { - 1,0} \right),\left( {0,1} \right),\left( {1,2} \right),\left( {2,4} \right)\)

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {1,0} \right),\left( {2,1} \right),\left( {4,2} \right),\left( {5,3} \right)\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

6. \(\left( {\begin{aligned}{{}}3\\{ - 1}\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 5}\\9\\{ - 9}\\3\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free