Exercise 3-8 refer to \({{\bf{P}}_{\bf{2}}}\) with the inner product given by evaluation at \( - {\bf{1}}\), 0, and 1. (See Example 2).

8. Compute the orthogonal projection of q onto the subspace spanned by p, for p and q in Exercise 4.

Short Answer

Expert verified

The orthogonal projection is \( - \frac{3}{2}t + \frac{1}{2}{t^2}\).

Step by step solution

01

Write the results from Exercise 4

\(\begin{align*}p\left( { - 1} \right) &= 3\left( { - 1} \right) - {\left( { - 1} \right)^2}\\ &= - 3 - 1\\ &= - 4\end{align*}\)

\(\begin{align*}p\left( 0 \right) &= 3\left( 0 \right) - {\left( 0 \right)^2}\\ &= 0\end{align*}\)

\(\begin{align*}p\left( 1 \right) &= 3\left( 1 \right) - {\left( 1 \right)^2}\\ &= 3 - 1\\ &= 2\end{align*}\)

And,

\(\begin{align*}q\left( { - 1} \right) &= 3 + 2{\left( { - 1} \right)^2}\\ &= 5\end{align*}\)

\(\begin{align*}q\left( 0 \right) &= 3 + 2{\left( 0 \right)^2}\\ &= 3\end{align*}\)

\(\begin{align*}q\left( 1 \right) &= 3 + 2{\left( 1 \right)^2}\\ &= 5\end{align*}\)

02

Find the inner product of q and p

The inner product \(\left\langle {q,p} \right\rangle \) can be calculated as follows:

\(\begin{align*}\left\langle {q,p} \right\rangle &= \left\langle {p,q} \right\rangle \\ &= p\left( { - 1} \right)q\left( { - 1} \right) + p\left( 0 \right)q\left( 0 \right) + p\left( 1 \right)q\left( 1 \right)\\ &= \left( { - 4} \right)\left( 5 \right) + \left( 0 \right)\left( 3 \right) + \left( 2 \right)\left( 5 \right)\\ &= - 10\end{align*}\)

03

Find the inner product of p and p

The inner product \(\left\langle {p,p} \right\rangle \) can be calcaulted as follows:

\(\begin{align*}\left\langle {p,p} \right\rangle &= p\left( { - 1} \right)p\left( { - 1} \right) + p\left( 0 \right)p\left( 0 \right) + p\left( 1 \right)p\left( 1 \right)\\ &= \left( { - 4} \right)\left( { - 4} \right) + \left( 0 \right)\left( 0 \right) + \left( 2 \right)\left( 2 \right)\\ &= 16 + 0 + 4\\ &= 20\end{align*}\)

04

Find the orthogonal projection of q onto subspace spanned by p

The orthogonal projection can be calculated as follows:

\(\begin{align*}\hat q &= \frac{{\left\langle {q,p} \right\rangle }}{{\left\langle {p,p} \right\rangle }}p\\ &= - \frac{{10}}{{20}}\left( {3t - {t^2}} \right)\\ &= - \frac{3}{2}t + \frac{1}{2}{t^2}\end{align*}\)

Thus, the orthogonal projection is \( - \frac{3}{2}t + \frac{1}{2}{t^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

Question: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).

2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)

Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).

Given \(A = QR\) as in Theorem 12, describe how to find an orthogonal\(m \times m\)(square) matrix \({Q_1}\) and an invertible \(n \times n\) upper triangular matrix \(R\) such that

\(A = {Q_1}\left[ {\begin{aligned}{{}{}}R\\0\end{aligned}} \right]\)

The MATLAB qr command supplies this “full” QR factorization

when rank \(A = n\).

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

12. \(\left( {\begin{aligned}{{}{}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free