Find an orthonormal basis of the subspace spanned by the vectors in Exercise 4.

Short Answer

Expert verified

An orthonormal basis is \(\left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\).

Step by step solution

01

Compute \(\left\| {{{\bf{v}}_1}} \right\|\) and \(\left\| {{{\bf{v}}_2}} \right\|\)

Let the vectors \({{\bf{v}}_1} = \left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),{{\bf{v}}_2} = \left( {\begin{aligned}{{}{}}3\\6\\3\end{aligned}} \right)\) from Exercise 4.

Compute \(\left\| {{{\bf{v}}_1}} \right\|\) and \(\left\| {{{\bf{v}}_2}} \right\|\) as shown below:

\(\begin{aligned}{}\left\| {{{\bf{v}}_1}} \right\| &= \sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {5^2}} \\ &= \sqrt {9 + 16 + 25} \\ &= \sqrt {50} \\\left\| {{{\bf{v}}_2}} \right\| &= \sqrt {{3^2} + {6^2} + {3^2}} \\ &= \sqrt {9 + 36 + 9} \\ &= \sqrt {54} \\ &= 3\sqrt 6 \end{aligned}\)

02

Determine an orthonormal basis

Obtain an orthonormal basis as shown below:

\(\begin{aligned}{}\left\{ {\frac{{{{\bf{v}}_1}}}{{\left\| {{{\bf{v}}_1}} \right\|}},\frac{{{{\bf{v}}_2}}}{{\left\| {{{\bf{v}}_2}} \right\|}}} \right\} &= \left\{ {\frac{1}{{\sqrt {50} }}\left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),\frac{1}{{3\sqrt 6 }}\left( {\begin{aligned}{{}{}}3\\6\\3\end{aligned}} \right)} \right\}\\ & = \left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\end{aligned}\)

Hence, an orthonormal basis is \(\left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\) may be written in the form

\(\begin{aligned}{c}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

Derive the normal equations (7) from the matrix form given in this section.

In Exercises 9-12, find a unit vector in the direction of the given vector.

10. \(\left( {\begin{aligned}{*{20}{c}}{ - 6}\\4\\{ - 3}\end{aligned}} \right)\)

In Exercises 9-12 find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

12. \(A = \left[ {\begin{array}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{ - {\bf{1}}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}\\{ - {\bf{1}}}&{\bf{1}}&{ - {\bf{1}}}\end{array}} \right]\), \({\bf{b}} = \left( {\begin{array}{{}{}}{\bf{2}}\\{\bf{5}}\\{\bf{6}}\\{\bf{6}}\end{array}} \right)\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1, and let \({\bf{x}} = \left( {{\bf{1}},{\bf{1}}} \right)\) and \({\bf{y}} = \left( {{\bf{5}}, - {\bf{1}}} \right)\).

a. Find\(\left\| {\bf{x}} \right\|\),\(\left\| {\bf{y}} \right\|\), and\({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).

b. Describe all vectors\(\left( {{z_{\bf{1}}},{z_{\bf{2}}}} \right)\), that are orthogonal to y.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free