Let \({{\bf{P}}_{\bf{3}}}\) have the inner product given by evaluation at \( - {\bf{3}}\), \( - {\bf{1}}\),1, and 3. Let \({p_{\bf{0}}}\left( t \right) = {\bf{1}}\), \({p_{\bf{1}}}\left( t \right) = t\), and \({p_{\bf{2}}}\left( t \right) = {t^{\bf{2}}}\).

  1. Compute the orthogonal projection of \({p_{\bf{2}}}\) onto the sub-spaced spanned by , and \({p_{\bf{1}}}\).
  2. Find the polynomial q that is orthogonal to \({p_{\bf{0}}}\) and , such that \(\left\{ {{p_{\bf{0}}},{p_{\bf{1}}},q} \right\}\) is an orthogonal basis for . Scale the polynomial q so that its vector of values at \(\left( { - {\bf{3}}, - {\bf{1}},{\bf{1}},{\bf{3}}} \right)\) is \(\left( {{\bf{1}}, - {\bf{1}}, - {\bf{1}},{\bf{1}}} \right)\).

Short Answer

Expert verified

a. 5

b. \(\frac{1}{4}\left( {{t^2} - 5} \right)\)

Step by step solution

01

Find the values of polynomials

The value of \({p_0}\left( t \right)\) is 1 for all values of \(t\).

The values of \({p_1}\left( t \right) = t\) are:

\(\begin{aligned}{p_1}\left( { - 3} \right) = - 3\\{p_1}\left( { - 1} \right) = - 1\\{p_1}\left( 1 \right) = 1\\{p_1}\left( 3 \right) = 3\end{aligned}\)

The values of \({p_2}\left( t \right) = {t^2}\) are:

\(\begin{aligned}{p_2}\left( { - 3} \right) = 9\\{p_2}\left( { - 1} \right) = 1\\{p_2}\left( 1 \right) = 1\\{p_2}\left( 3 \right) = 9\end{aligned}\)

02

Find the inner products

Find the inner product \(\left\langle {{p_2},{p_0}} \right\rangle \).

\(\begin{aligned}\left\langle {{p_2},{p_0}} \right\rangle &= {p_2}\left( { - 3} \right){p_0}\left( { - 3} \right) + {p_2}\left( { - 1} \right){p_0}\left( { - 1} \right) + {p_2}\left( 1 \right){p_0}\left( 1 \right) + {p_2}\left( 3 \right){p_0}\left( 3 \right)\\ &= \left( 9 \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right) + \left( 9 \right)\left( 1 \right)\\ &= 20\end{aligned}\)

Find the inner product \(\left\langle {{p_2},{p_1}} \right\rangle \).

\(\begin{aligned}\left\langle {{p_2},{p_1}} \right\rangle &= {p_2}\left( { - 3} \right){p_1}\left( { - 3} \right) + {p_2}\left( { - 1} \right){p_1}\left( { - 1} \right) + {p_2}\left( 1 \right){p_1}\left( 1 \right) + {p_2}\left( 3 \right){p_1}\left( 3 \right)\\ &= \left( 9 \right)\left( { - 3} \right) + \left( 1 \right)\left( { - 1} \right) + \left( 1 \right)\left( 1 \right) + \left( 9 \right)\left( 3 \right)\\ &= 0\end{aligned}\)

Find the inner product \(\left\langle {{p_0},{p_0}} \right\rangle \).

\(\begin{aligned}\left\langle {{p_0},{p_0}} \right\rangle &= {p_0}\left( { - 3} \right){p_0}\left( { - 3} \right) + {p_0}\left( { - 1} \right){p_0}\left( { - 1} \right) + {p_0}\left( 1 \right){p_0}\left( 1 \right) + {p_0}\left( 3 \right){p_1}\left( 3 \right)\\ &= 1 + 1 + 1 + 1\\ &= 4\end{aligned}\)

Find the inner product \(\left\langle {{p_1},{p_1}} \right\rangle \).

\(\begin{aligned}\left\langle {{p_1},{p_1}} \right\rangle &= {p_1}\left( { - 3} \right){p_1}\left( { - 3} \right) + {p_1}\left( { - 1} \right){p_1}\left( { - 1} \right) + {p_1}\left( 1 \right){p_1}\left( 1 \right) + {p_1}\left( 3 \right){p_1}\left( 3 \right)\\ &= \left( { - 3} \right)\left( { - 3} \right) + \left( { - 1} \right)\left( { - 1} \right) + \left( 1 \right)\left( 1 \right) + \left( 3 \right)\left( 3 \right)\\ &= 20\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13 and 14, the columns of \(Q\) were obtained by applying the Gram Schmidt process to the columns of \(A\). Find anupper triangular matrix \(R\) such that \(A = QR\). Check your work.

14.\(A = \left( {\begin{aligned}{{}{r}}{ - 2}&3\\5&7\\2&{ - 2}\\4&6\end{aligned}} \right)\), \(Q = \left( {\begin{aligned}{{}{r}}{\frac{{ - 2}}{7}}&{\frac{5}{7}}\\{\frac{5}{7}}&{\frac{2}{7}}\\{\frac{2}{7}}&{\frac{{ - 4}}{7}}\\{\frac{4}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

In Exercises 11 and 12, find the closest point to \[{\bf{y}}\] in the subspace \[W\] spanned by \[{{\bf{v}}_1}\], and \[{{\bf{v}}_2}\].

12. \[y = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\], \[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\]

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

5. \(\left( {\frac{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}} \right){\mathop{\rm v}\nolimits} \)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

Suppose \(A = QR\), where \(Q\) is \(m \times n\) and R is \(n \times n\). Showthat if the columns of \(A\) are linearly independent, then \(R\) mustbe invertible.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free