Let \(\lambda \) be any eigenvalue of a symmetric matrix \(A\). Justify the statement made in this section that \(m \le \lambda \le M\), where \(m\) and \(M\) are defined as in (2). [Hint: Find an \({\rm{x}}\) such that \(\lambda = {{\rm{x}}^T}A{\rm{x}}\).]

Short Answer

Expert verified

The statement\({{\rm{x}}^T}A{\rm{x}} = \lambda \)is justified when\(m \le \lambda \le M\).

Step by step solution

01

Symmetric Matrices and Quadratic Forms

When any Symmetric Matrix\(A\)is diagonalized orthogonallyas \(PD{P^{ - 1}}\)we have:

\(\begin{array}{l}{{\rm{x}}^T}A{\rm{x}} = {{\rm{y}}^T}D{\rm{y}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{\rm{as }}x = Py} \right\}\\{\rm{and}}\\\left\| {\rm{x}} \right\| = \left\| {P{\rm{y}}} \right\| = \left\| {\rm{y}} \right\|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\forall y \in \mathbb{R}} \right\}\end{array}\)

02

Find the maximum value

As per the question, we have:

The matrix\(A\)has eigenvalue\(\lambda \)with eigenvector\({\rm{x}}\), then:

\(\begin{array}{c}{{\rm{x}}^T}A{\rm{x}} = {{\rm{x}}^T}\lambda {\rm{x}}\\ = \lambda \left( {{{\rm{x}}^T}{\rm{x}}} \right)\\ = \lambda {\left\| {\rm{x}} \right\|^2}\\ = \lambda \end{array}\)

Thus,

\({{\rm{x}}^T}A{\rm{x}} = \lambda ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\forall \lambda \in \left[ {m,M} \right]} \right\}\)

The statement\({{\rm{x}}^T}A{\rm{x}} = \lambda \)is justified when\(m \le \lambda \le M\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:Find the principal components of the data for Exercise 1.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

13. \(\left( {\begin{aligned}{{}}3&1\\1&{\,\,3}\end{aligned}} \right)\)

Question: Mark Each statement True or False. Justify each answer. In each part, A represents an \(n \times n\) matrix.

  1. If A is orthogonally diagonizable, then A is symmetric.
  2. If A is an orthogonal matrix, then A is symmetric.
  3. If A is an orthogonal matrix, then \(\left\| {A{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).
  4. The principal axes of a quadratic from \({{\bf{x}}^T}A{\bf{x}}\) can be the columns of any matrix P that diagonalizes A.
  5. If P is an \(n \times n\) matrix with orthogonal columns, then \({P^T} = {P^{ - {\bf{1}}}}\).
  6. If every coefficient in a quadratic form is positive, then the quadratic form is positive definite.
  7. If \({{\bf{x}}^T}A{\bf{x}} > {\bf{0}}\) for some x, then the quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is positive definite.
  8. By a suitable change of variable, any quadratic form can be changed into one with no cross-product term.
  9. The largest value of a quadratic form \({{\bf{x}}^T}A{\bf{x}}\), for \(\left\| {\bf{x}} \right\| = {\bf{1}}\) is the largest entery on the diagonal A.
  10. The maximum value of a positive definite quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is the greatest eigenvalue of A.
  11. A positive definite quadratic form can be changed into a negative definite form by a suitable change of variable \({\bf{x}} = P{\bf{u}}\), for some orthogonal matrix P.
  12. An indefinite quadratic form is one whose eigenvalues are not definite.
  13. If P is an \(n \times n\) orthogonal matrix, then the change of variable \({\bf{x}} = P{\bf{u}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form whose matrix is \({P^{ - {\bf{1}}}}AP\).
  14. If U is \(m \times n\) with orthogonal columns, then \(U{U^T}{\bf{x}}\) is the orthogonal projection of x onto ColU.
  15. If B is \(m \times n\) and x is a unit vector in \({\mathbb{R}^n}\), then \(\left\| {B{\bf{x}}} \right\| \le {\sigma _{\bf{1}}}\), where \({\sigma _{\bf{1}}}\) is the first singular value of B.
  16. A singular value decomposition of an \(m \times n\) matrix B can be written as \(B = P\Sigma Q\), where P is an \(m \times n\) orthogonal matrix and \(\Sigma \) is an \(m \times n\) diagonal matrix.
  17. If A is \(n \times n\), then A and \({A^T}A\) have the same singular values.

Classify the quadratic forms in Exercises 9-18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

10. \({\bf{2}}x_{\bf{1}}^{\bf{2}} + {\bf{6}}{x_{\bf{1}}}{x_{\bf{2}}} - {\bf{6}}x_{\bf{2}}^{\bf{2}}\)

Question: Let \({x_1}\,,{x_2}\) denote the variables for the two-dimensional data in Exercise 1. Find a new variable \({y_1}\) of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2}\), with\(c_1^2 + c_2^2 = 1\), such that \({y_1}\) has maximum possible variance over the given data. How much of the variance in the data is explained by \({y_1}\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free