In Exercises 3-6, find (a) the maximum value of \(Q\left( {\rm{x}} \right)\) subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector \({\rm{u}}\) where this maximum is attained, and (c) the maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).

4. \(Q\left( x \right) = 3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1^{}x_2^{} + 2x_1^{}x_3^{} + 2x_2^{}x_3^{}\).

Short Answer

Expert verified

The required values are:

  1. The maximum value of\(Q\left( {\rm{x}} \right)\)the subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\)is\({\lambda _1} = 7\).
  2. A unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/
  3. {\vphantom {1 {\sqrt 3 }}} \right.
  4. \kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/
  5. {\vphantom {1 {\sqrt 3 }}} \right.
  6. \kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/
  7. {\vphantom {1 {\sqrt 3 }}} \right.
  8. \kern-\nulldelimiterspace} {\sqrt 3 }}}\end{array}} \right]\).
  9. The maximum of\(Q\left( {\rm{x}} \right)\)subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is\({\lambda _2} = 4\).

Step by step solution

01

Find the greatest eigenvalue

As per the question, we have:

\(Q\left( {\rm{x}} \right) = 3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1^{}x_2^{} + 2x_1^{}x_3^{} + 2x_2^{}x_3^{}\)

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)will be the greatest eigenvalue.

So, from exercise 2, the eigenvalues are 7, 4, and 0. This implies that the greatest eigenvalue is 7.

\({\lambda _1} = 7\)

Hence, the maximum value of \(Q\left( {\rm{x}} \right)\) the subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\) is \({\lambda _1} = 7\).

02

Find the vector for this greatest eigenvalue. 

Apply the theorem which states that the value of\({{\rm{x}}^T}A{\rm{x}}\) is maximum when \({\rm{x}}\) is a unit eigenvector \({{\rm{u}}_1}\) corresponding to the greatest eigenvalue \({\lambda _1}\).

The eigenvector that corresponds to this eigenvalue is:

\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\end{array}} \right]\).

Hence,the unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 3 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 3 }}}\end{array}} \right]\).

03

Find the second greatest eigenvalue. 

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and\({{\rm{x}}^T}{\rm{u}} = 0\)will be the second largest eigenvalue. That is:

\({\lambda _2} = 4\)

Hence, the maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\) and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 4\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let B be an \(n \times n\) symmetric matrix such that \({B^{\bf{2}}} = B\). Any such matrix is called a projection matrix (or an orthogonal projection matrix.) Given any y in \({\mathbb{R}^n}\), let \({\bf{\hat y}} = B{\bf{y}}\)and\({\bf{z}} = {\bf{y}} - {\bf{\hat y}}\).

a) Show that z is orthogonal to \({\bf{\hat y}}\).

b) Let W be the column space of B. Show that y is the sum of a vector in W and a vector in \({W^ \bot }\). Why does this prove that By is the orthogonal projection of y onto the column space of B?

Question: 2. Let \(\left\{ {{{\bf{u}}_1},{{\bf{u}}_2},....,{{\bf{u}}_n}} \right\}\) be an orthonormal basis for \({\mathbb{R}_n}\) , and let \({\lambda _1},....{\lambda _n}\) be any real scalars. Define

\(A = {\lambda _1}{{\bf{u}}_1}{\bf{u}}_1^T + ..... + {\lambda _n}{\bf{u}}_n^T\)

a. Show that A is symmetric.

b. Show that \({\lambda _1},....{\lambda _n}\) are the eigenvalues of A

10.Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

10. \(\left( {\begin{aligned}{{}}{1/3}&{\,\,2/3}&{\,\,2/3}\\{2/3}&{\,\,1/3}&{ - 2/3}\\{2/3}&{ - 2/3}&{\,\,1/3}\end{aligned}} \right)\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

22. \(\left( {\begin{aligned}{{}}4&0&1&0\\0&4&0&1\\1&0&4&0\\0&1&0&4\end{aligned}} \right)\)

Question: If A is \(m \times n\), then the matrix \(G = {A^T}A\) is called the Gram matrix of A. In this case, the entries of G are the inner products of the columns of A. (See Exercises 9 and 10).

9. Show that the Gram matrix of any matrix A is positive semidefinite, with the same rank as A. (See the Exercises in Section 6.5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free