In Exercises 3-6, find (a) the maximum value of \(Q\left( {\rm{x}} \right)\) subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector \({\rm{u}}\) where this maximum is attained, and (c) the maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).

5. \(Q\left( x \right) = x_1^2 + x_2^2 - 10x_1^{}x_2^{}\).

Short Answer

Expert verified

The required values are:

  1. The maximum value of\(Q\left( {\rm{x}} \right)\)the subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\)is\({\lambda _1} = 6\).
  2. A unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/
  3. {\vphantom {{ - 1} {\sqrt 2 }}} \right.
  4. \kern-\nulldelimiterspace} {\sqrt 2 }}}\\{{1 \mathord{\left/
  5. {\vphantom {1 {\sqrt 2 }}} \right.
  6. \kern-\nulldelimiterspace} {\sqrt 2 }}}\end{array}} \right]\).
  7. The maximum of\(Q\left( {\rm{x}} \right)\)subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is\({\lambda _2} = - 4\).

Step by step solution

01

Find the greatest eigenvalue

As per the question, we have:

\(Q\left( {\rm{x}} \right) = x_1^2 + x_2^2 - 10x_1^{}x_2^{}\)

The matrix with its eigenvalues has the form:

\(\begin{array}{l}A = \left[ {\begin{array}{*{20}{c}}1&{ - 5}\\{ - 5}&1\end{array}} \right]\\ \Rightarrow {\lambda _1} = 6\;\;\& \,\,\,{\lambda _2} = - 4\end{array}\)

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)will be the greatest eigenvalue.

So, we have:

\({\lambda _1} = 6\)

Hence,the maximum value of\(Q\left( {\rm{x}} \right)\)the subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\)is\({\lambda _1} = 6\).

02

Find the vector for this greatest eigenvalue

Apply the theorem which states that the value of\({{\rm{x}}^T}A{\rm{x}}\) is maximum when \({\rm{x}}\) is a unit eigenvector \({{\rm{u}}_1}\) corresponding to the greatest eigenvalue \({\lambda _1}\).

Find the eigenvector corresponding to \({\lambda _1} = 6\).

\(\begin{array}{c}A - 6I = \left[ {\begin{array}{*{20}{c}}{1 - 6}&{ - 5}\\{ - 5}&{1 - 6}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 5}\\{ - 5}&{ - 5}\end{array}} \right]\end{array}\)

Theorem the null space is \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right]\).

The eigenvector that corresponds to eigenvalue\({\lambda _1} = 6\)is:

\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} {\sqrt 2 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 2 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 2 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 2 }}}\end{array}} \right]\).

Hence,a unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} {\sqrt 2 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 2 }}}\\{{1 \mathord{\left/

{\vphantom {1 {\sqrt 2 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 2 }}}\end{array}} \right]\).

03

Find the second greatest eigenvalue 

The maximum value of the given function is subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and\({{\rm{x}}^T}{\rm{u}} = 0\)will be the second-largest eigenvalue. That is:

\({\lambda _2} = - 4\)

Hence,the maximum of\(Q\left( {\rm{x}} \right)\)subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is\({\lambda _2} = - 4\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

16. \(A = \left( {\begin{array}{*{20}{c}}4&0&{ - 1}&{ - 2}&0\\{ - 5}&0&3&5&0\\{\,\,\,2}&{\,\,0}&{ - 1}&{ - 2}&0\\{\,\,\,6}&{\,\,0}&{ - 3}&{ - 6}&0\end{array}} \right)\)

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

12. \(P = \left( {\begin{aligned}{{}}{.5}&{.5}&{ - .5}&{ - .5}\\{.5}&{.5}&{.5}&{.5}\\{.5}&{ - .5}&{ - .5}&{.5}\\{.5}&{ - .5}&{.5}&{ - .5}\end{aligned}} \right)\)

Classify the quadratic forms in Exercises 9-18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

9. \({\bf{4}}x_{\bf{1}}^{\bf{2}} - {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{4}}x_{\bf{2}}^{\bf{2}}\)

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

40. \(\left( {\begin{aligned}{{}}{\bf{8}}&{\bf{2}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{8}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{2}}&{\bf{8}}&{ - {\bf{6}}}&{\bf{9}}\\{ - {\bf{6}}}&{ - {\bf{6}}}&{ - {\bf{6}}}&{{\bf{24}}}&{\bf{9}}\\{\bf{9}}&{\bf{9}}&{\bf{9}}&{\bf{9}}&{ - {\bf{21}}}\end{aligned}} \right)\)

25.Let \({\bf{T:}}{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\) be a linear transformation. Describe how to find a basis \(B\) for \({\mathbb{R}^n}\) and a basis \(C\) for \({\mathbb{R}^m}\) such that the matrix for \(T\) relative to \(B\) and \(C\) is an \(m \times n\) “diagonal” matrix.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free