In Exercises 3-6, find (a) the maximum value of \(Q\left( {\rm{x}} \right)\) subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector \({\rm{u}}\) where this maximum is attained, and (c) the maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).

6. \(Q\left( {\rm{x}} \right) = 3x_1^2 + 9x_2^2 + 8x_1^{}x_2^{}\)

Short Answer

Expert verified

The required values are:

  1. The maximum value of\(Q\left( {\rm{x}} \right)\)the subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\)is\({\lambda _1} = 11\).
  2. A unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/
  3. {\vphantom {1 {\sqrt 5 }}} \right.
  4. \kern-\nulldelimiterspace} {\sqrt 5 }}}\\{{2 \mathord{\left/
  5. {\vphantom {2 {\sqrt 5 }}} \right.
  6. \kern-\nulldelimiterspace} {\sqrt 5 }}}\end{array}} \right]\).
  7. The maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\) and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 1\).

Step by step solution

01

Find the greatest eigenvalue 

As per the question, we have:

\(Q\left( {\rm{x}} \right) = 3x_1^2 + 9x_2^2 + 8x_1^{}x_2^{}\)

The matrix with its eigenvalues has the form:

\(\begin{array}{l}A = \left[ {\begin{array}{*{20}{c}}3&4\\4&9\end{array}} \right]\\ \Rightarrow {\lambda _1} = 11\;\& \,\,\,{\lambda _2} = 1\end{array}\)

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)will be the greatest eigenvalue.

So, we have:

\({\lambda _1} = 11\)

Hence,this is therequired eigenvalue.

02

Find the vector for this greatest eigenvalue

Apply the theorem which states that the value of\({{\rm{x}}^T}A{\rm{x}}\) is maximum when \({\rm{x}}\) is a unit eigenvector \({{\rm{u}}_1}\) corresponding to the greatest eigenvalue \({\lambda _1}\).

Find the eigenvector corresponding to \({\lambda _1} = 11\).

\(\begin{array}{c}A - 11I = \left[ {\begin{array}{*{20}{c}}{3 - 11}&4\\4&{9 - 11}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 8}&4\\4&{ - 2}\end{array}} \right]\end{array}\)

Theorem the null space is \(\left[ {\begin{array}{*{20}{c}}{\frac{1}{2}}\\1\end{array}} \right]\). The eigenvector is \(\left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\).

The unit eigenvector that corresponds to the eigenvalue\({\lambda _1} = 11\)is:

\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/

{\vphantom {1 {\sqrt 5 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 5 }}}\\{{2 \mathord{\left/

{\vphantom {2 {\sqrt 5 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 5 }}}\end{array}} \right]\).

Hence,a unit vector\({\rm{u}}\)where this maximum is attained is\({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{1 \mathord{\left/

{\vphantom {1 {\sqrt 5 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 5 }}}\\{{2 \mathord{\left/

{\vphantom {2 {\sqrt 5 }}} \right.

\kern-\nulldelimiterspace} {\sqrt 5 }}}\end{array}} \right]\).

03

Find the second greatest eigenvalue

The maximum value of the given function is subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and\({{\rm{x}}^T}{\rm{u}} = 0\)will be the second-largest eigenvalue. That is:

\({\lambda _2} = 1\)

Hence,the maximum of\(Q\left( {\rm{x}} \right)\)the subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is\({\lambda _2} = 1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

All symmetric matrices are diagonalizable.

Question: [M] A Landsat image with three spectral components was made of Homestead Air Force Base in Florida (after the base was hit by Hurricane Andrew in 1992). The covariance matrix of the data is shown below. Find the first principal component of the data, and compute the percentage of the total variance that is contained in this component.

\[S = \left[ {\begin{array}{*{20}{c}}{164.12}&{32.73}&{81.04}\\{32.73}&{539.44}&{249.13}\\{81.04}&{246.13}&{189.11}\end{array}} \right]\]

Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.

Determine which of the matrices in Exercises 1–6 are symmetric.

1. \(\left[ {\begin{aligned}{{}}3&{\,\,\,5}\\5&{ - 7}\end{aligned}} \right]\)

Question: Repeat Exercise 15 for the following SVD of a \({\bf{3 \times 4}}\) matrix \(A\):

\(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{.86}}}&{ - {\bf{.11}}}&{ - {\bf{.50}}}\\{{\bf{.31}}}&{{\bf{.68}}}&{ - {\bf{.67}}}\\{{\bf{.41}}}&{ - {\bf{.73}}}&{ - {\bf{5}}{\bf{.5}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\bf{12}}{\bf{.48}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{\bf{6}}{\bf{.34}}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right){\bf{ \times }}\left( {\begin{array}{*{20}{c}}{{\bf{.66}}}&{ - {\bf{.03}}}&{ - {\bf{.35}}}&{{\bf{.66}}}\\{ - {\bf{1}}{\bf{.3}}}&{ - {\bf{.90}}}&{ - {\bf{.39}}}&{ - {\bf{.13}}}\\{{\bf{.65}}}&{{\bf{.08}}}&{ - {\bf{.16}}}&{ - {\bf{.73}}}\\{ - {\bf{.34}}}&{{\bf{.42}}}&{ - {\bf{8}}{\bf{.4}}}&{ - {\bf{0}}{\bf{.8}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free