Determine which of the matrices in Exercises 1–6 are symmetric.

1. \(\left[ {\begin{aligned}{{}}3&{\,\,\,5}\\5&{ - 7}\end{aligned}} \right]\)

Short Answer

Expert verified

The given matrix is symmetric.

Step by step solution

01

Find the transpose

A matrix\(A\) with, \(n \times n\) dimension, is symmetric if it satisfies the equation\({A^T} = A\).

It is given that\(A = \left[ {\begin{aligned}{{}}3&{\,\,5}\\5&{ - 7}\end{aligned}} \right]\). Find the transpose of\(A\), as shown below:

\(\begin{aligned}{}{A^T} &= \left[ {\begin{aligned}{{}}3&{\,\,5}\\5&{ - 7}\end{aligned}} \right]\\ &= A\end{aligned}\)

02

Draw the conclusion

As \({A^T} = A\), so it can be concluded that \(A\) is a symmetric matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

40. \(\left( {\begin{aligned}{{}}{\bf{8}}&{\bf{2}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{8}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{2}}&{\bf{8}}&{ - {\bf{6}}}&{\bf{9}}\\{ - {\bf{6}}}&{ - {\bf{6}}}&{ - {\bf{6}}}&{{\bf{24}}}&{\bf{9}}\\{\bf{9}}&{\bf{9}}&{\bf{9}}&{\bf{9}}&{ - {\bf{21}}}\end{aligned}} \right)\)

Question: 6. Let A be an \(n \times n\) symmetric matrix. Use Exercise 5 and an eigenvector basis for \({\mathbb{R}^n}\) to give a second proof of the decomposition in Exercise 4(b).

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Question: In Exercises 17-22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

18. \(\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right),{\rm{ }}\left( {\begin{array}{*{20}{c}}0\\{ - 1}\\0\end{array}} \right)\)

(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

26. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{18}}}&{{\bf{13}}}&{ - {\bf{4}}}&{\bf{4}}\\{\bf{2}}&{{\bf{19}}}&{ - {\bf{4}}}&{{\bf{12}}}\\{ - {\bf{14}}}&{{\bf{11}}}&{ - {\bf{12}}}&{\bf{8}}\\{ - {\bf{2}}}&{{\bf{21}}}&{\bf{4}}&{\bf{8}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free