(M) Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

39. \(\left( {\begin{aligned}{{}}{.{\bf{31}}}&{.{\bf{58}}}&{.{\bf{08}}}&{.{\bf{44}}}\\{.{\bf{58}}}&{ - .{\bf{56}}}&{.{\bf{44}}}&{ - .{\bf{58}}}\\{.{\bf{08}}}&{.{\bf{44}}}&{.{\bf{19}}}&{ - .{\bf{08}}}\\{ - .{\bf{44}}}&{ - .{\bf{58}}}&{ - .{\bf{08}}}&{.{\bf{31}}}\end{aligned}} \right)\)

Short Answer

Expert verified

\(P = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}&{\frac{3}{{\sqrt {50} }}}&{ - \frac{2}{5}}&{ - \frac{2}{5}}\\0&{\frac{4}{{\sqrt {50} }}}&{ - \frac{1}{5}}&{\frac{4}{5}}\\0&{\frac{4}{{\sqrt {50} }}}&{\frac{4}{5}}&{ - \frac{1}{5}}\\{\frac{1}{{\sqrt 2 }}}&{ - \frac{3}{{\sqrt {50} }}}&{\frac{2}{5}}&{\frac{2}{5}}\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{{}}{ - 1.25}&0&0&0\\0&{0.75}&0&0\\0&0&{0.75}&0\\0&0&0&0\end{aligned}} \right)\)

Step by step solution

01

Step 1:Findthe eigenvalues of the matrix

Use the following MATLAB code to find the eigenvalues of the given matrix:

\(\begin{aligned}{} > > A = \left( \begin{aligned}{}\begin{aligned}{{}}{.31}&{.58}&{.08}&{.44}\end{aligned};\,\begin{aligned}{{}}{\,.58}&{ - .56}&{.44}&{ - .58}\end{aligned};\,\begin{aligned}{{}}{\,.08}&{.44}&{.19}&{ - .08}\end{aligned};\\\,\begin{aligned}{{}}{ - .44}&{.58}&{ - .08}&{.31}\end{aligned}\end{aligned} \right);\\ > > \left( {\begin{aligned}{{}}{\rm{E}}&{\rm{V}}\end{aligned}} \right) = {\rm{eigs}}\left( A \right);\end{aligned}\)

So, the eigenvalues are\(E = \left( {\begin{aligned}{{}}{ - 1.25}\\{0.75}\\{0.75}\\0\end{aligned}} \right)\).

02

Step 2:Find the eigenvectors of the matrix

Use the following MATLAB code to find eigenvectors.

\( > > {v_i} = {\rm{nullbasis}}\left( {A - E\left( i \right)*{\rm{eye}}\left( 4 \right)} \right)\)

Following are the eigenvectors of A.

\({v_1} = \left( {\begin{aligned}{{}}1\\0\\0\\1\end{aligned}} \right)\), \({v_2} = \left( {\begin{aligned}{{}}3\\2\\2\\0\end{aligned}} \right)\), \({v_3} = \left( {\begin{aligned}{{}}1\\0\\0\\1\end{aligned}} \right)\), and \({v_4} = \left( {\begin{aligned}{{}}3\\4\\4\\{ - 3}\end{aligned}} \right)\)

03

Step 3:Find the orthogonal projection

The orthogonal projections can be calculated as follows:

\(\begin{aligned}{}{{\bf{u}}_1} &= \frac{1}{{\left\| {{v_1}} \right\|}}{v_1}\\ &= \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}\\0\\0\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\left\| {{v_2}} \right\|}}{v_2}\\ &= \left( {\begin{aligned}{{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{4}{{\sqrt {50} }}}\\{\frac{4}{{\sqrt {50} }}}\\{ - \frac{3}{{\sqrt {50} }}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_3} &= \frac{1}{{\left\| {{v_3}} \right\|}}{v_3}\\ &= \left( {\begin{aligned}{{}}{ - \frac{2}{5}}\\{ - \frac{1}{5}}\\{\frac{4}{5}}\\{\frac{2}{5}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_4} &= \frac{1}{{\left\| {{v_4}} \right\|}}{v_4}\\ &= \left( {\begin{aligned}{{}}{ - \frac{2}{5}}\\{\frac{4}{5}}\\{ - \frac{1}{5}}\\{\frac{2}{5}}\end{aligned}} \right)\end{aligned}\)

04

Step 4:Find the matrix P and D 

The matrix P can be written using orthogonal projections as:

\(P = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}&{\frac{3}{{\sqrt {50} }}}&{ - \frac{2}{5}}&{ - \frac{2}{5}}\\0&{\frac{4}{{\sqrt {50} }}}&{ - \frac{1}{5}}&{\frac{4}{5}}\\0&{\frac{4}{{\sqrt {50} }}}&{\frac{4}{5}}&{ - \frac{1}{5}}\\{\frac{1}{{\sqrt 2 }}}&{ - \frac{3}{{\sqrt {50} }}}&{\frac{2}{5}}&{\frac{2}{5}}\end{aligned}} \right)\)

The diagonalized matrix can be written as\(D = \left( {\begin{aligned}{{}}{ - 1.25}&0&0&0\\0&{0.75}&0&0\\0&0&{0.75}&0\\0&0&0&0\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let A be the matrix of the quadratic form

\({\bf{9}}x_{\bf{1}}^{\bf{2}} + {\bf{7}}x_{\bf{2}}^{\bf{2}} + {\bf{11}}x_{\bf{3}}^{\bf{2}} - {\bf{8}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{8}}{x_{\bf{1}}}{x_{\bf{3}}}\)

It can be shown that the eigenvalues of A are 3,9, and 15. Find an orthogonal matrix P such that the change of variable \({\bf{x}} = P{\bf{y}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form which no cross-product term. Give P and the new quadratic form.

Question: Repeat Exercise 15 for the following SVD of a \({\bf{3 \times 4}}\) matrix \(A\):

\(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{.86}}}&{ - {\bf{.11}}}&{ - {\bf{.50}}}\\{{\bf{.31}}}&{{\bf{.68}}}&{ - {\bf{.67}}}\\{{\bf{.41}}}&{ - {\bf{.73}}}&{ - {\bf{5}}{\bf{.5}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\bf{12}}{\bf{.48}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{\bf{6}}{\bf{.34}}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right){\bf{ \times }}\left( {\begin{array}{*{20}{c}}{{\bf{.66}}}&{ - {\bf{.03}}}&{ - {\bf{.35}}}&{{\bf{.66}}}\\{ - {\bf{1}}{\bf{.3}}}&{ - {\bf{.90}}}&{ - {\bf{.39}}}&{ - {\bf{.13}}}\\{{\bf{.65}}}&{{\bf{.08}}}&{ - {\bf{.16}}}&{ - {\bf{.73}}}\\{ - {\bf{.34}}}&{{\bf{.42}}}&{ - {\bf{8}}{\bf{.4}}}&{ - {\bf{0}}{\bf{.8}}}\end{array}} \right)\)

Determine which of the matrices in Exercises 1–6 are symmetric.

1. \(\left[ {\begin{aligned}{{}}3&{\,\,\,5}\\5&{ - 7}\end{aligned}} \right]\)

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

37. \(\left( {\begin{aligned}{{}}{\bf{6}}&{\bf{2}}&{\bf{9}}&{ - {\bf{6}}}\\{\bf{2}}&{\bf{6}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{9}}&{ - {\bf{6}}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{\bf{9}}&{\bf{2}}&{\bf{6}}\end{aligned}} \right)\)

25.Let \({\bf{T:}}{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\) be a linear transformation. Describe how to find a basis \(B\) for \({\mathbb{R}^n}\) and a basis \(C\) for \({\mathbb{R}^m}\) such that the matrix for \(T\) relative to \(B\) and \(C\) is an \(m \times n\) “diagonal” matrix.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free