(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

27. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{6}}&{ - {\bf{8}}}&{ - {\bf{4}}}&{\bf{5}}&{ - {\bf{4}}}\\{\bf{2}}&{\bf{7}}&{ - {\bf{5}}}&{ - {\bf{6}}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{1}}}&{ - {\bf{8}}}&{\bf{2}}&{\bf{2}}\\{ - {\bf{1}}}&{ - {\bf{2}}}&{\bf{4}}&{\bf{4}}&{ - {\bf{8}}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is:\(A = \left( {\begin{array}{*{20}{c}}{ - .57}&{ - .65}&{ - .42}&{.27}\\{.63}&{ - .24}&{ - .68}&{ - .29}\\{.07}&{ - .63}&{.53}&{ - .56}\\{ - .51}&{.34}&{ - .29}&{ - .73}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16.46}&0&0&0&0\\0&{12.16}&0&0&0\\0&0&{4.87}&0&0\\0&0&0&{4.31}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 10}&{.61}&{ - .21}&{ - .52}&{.55}\\{ - .39}&{.29}&{.84}&{ - 1.4}&{ - .19}\\{ - .74}&{ - .27}&{ - .07}&{.38}&{.49}\\{.41}&{ - .50}&{.45}&{ - .23}&{.58}\\{ - .36}&{ - .48}&{ - .19}&{ - .72}&{ - .29}\end{array}} \right)\)

Step by step solution

01

Write the matrix 

Find transpose of the matrix\(A\)by using MATLAB commands.

\( > > {\rm{ }}A = \left( {6{\rm{ }} - 8{\rm{ }} - 4{\rm{ }}5{\rm{ }} - 4;{\rm{ }}2{\rm{ }}7{\rm{ }} - 5{\rm{ }} - 6{\rm{ }}4;{\rm{ }}0{\rm{ }} - 1{\rm{ }} - 8{\rm{ }}2{\rm{ }}2;{\rm{ }} - 1{\rm{ }} - 2{\rm{ }}4{\rm{ }}4{\rm{ }} - 8} \right);\)

Find transpose of the matrix:

\( > > B = A';\)

\(B = \left( {\begin{array}{*{20}{c}}6&2&0&{ - 1}\\{ - 8}&7&{ - 1}&{ - 2}\\{ - 4}&{ - 5}&{ - 8}&4\\5&{ - 6}&2&4\\{ - 4}&4&2&{ - 8}\end{array}} \right)\)

Find product of \(A\)and\(B\).

\( > > {\rm{ }}C = B*A;\)

\(C = \left( {\begin{array}{*{20}{c}}{41}&{ - 32}&{ - 38}&{14}&{ - 8}\\{ - 32}&{118}&{ - 3}&{ - 92}&{74}\\{ - 38}&{ - 3}&{121}&{10}&{ - 52}\\{14}&{ - 92}&{10}&{81}&{ - 72}\\{ - 8}&{74}&{ - 52}&{ - 72}&{100}\end{array}} \right)\)

02

Find eigenvalues and eigenvectors of matrix \(AB\)

Find the eigenvalues of matrix \(AB\).

\( > > {\rm{ }}E = eigs\left( C \right);\)

\(E = \left( {\begin{array}{*{20}{c}}{270.87}\\{147.85}\\{23.73}\\{18.55}\\0\end{array}} \right)\)

Find eigenvectors.

\( > > {\rm{ }}\left( {V{\rm{ }}B} \right) = eigs\left( C \right);\)

\(V = \left( {\begin{array}{*{20}{c}}{ - 10}&{ - .39}&{ - .74}&{.41}&{ - .36}\\{.61}&{.29}&{ - .27}&{ - .50}&{ - .48}\\{ - .21}&{.84}&{ - .07}&{.45}&{ - .19}\\{ - .52}&{ - .14}&{.38}&{ - .23}&{ - .72}\\{.55}&{ - .19}&{.49}&{.58}&{ - .29}\end{array}} \right)\)

\(\begin{array}{l} > > {\rm{ }}SIGMA = {\rm{ }}diag\left( {sqrt\left( E \right)} \right);\\ > > {\rm{ }}SS = sqrt\left( E \right);\end{array}\)

Then we have\(\sum \)matrix.

\(\sum = \left( {\begin{array}{*{20}{c}}{16.46}&0&0&0&0\\0&{12.16}&0&0&0\\0&0&{4.87}&0&0\\0&0&0&{4.31}&0\end{array}} \right)\)

03

Find the singular value decomposition \(A\)

Write the vectors of\(U\)matrix:

\(\begin{array}{l} > > {\rm{ }}u1{\rm{ }} = {\rm{ }}\left( {1/SS\left( 1 \right)} \right)*A*V\left( {:,1} \right);\\ > > {\rm{ }}u2{\rm{ }} = {\rm{ }}\left( {1/SS\left( 2 \right)} \right)*A*V\left( {:,2} \right);\\ > > {\rm{ }}u3{\rm{ }} = {\rm{ }}\left( {1/SS\left( 3 \right)} \right)*A*V\left( {:,3} \right);\\ > > {\rm{ }}u4{\rm{ }} = {\rm{ }}(1/SS\left( 4 \right)*A*V\left( {:,4} \right);\\ > > {\rm{ }}U = \left( {u1;u2;u3;u4} \right);\end{array}\)

\(U = \left( {\begin{array}{*{20}{c}}{ - .57}&{ - .65}&{ - .42}&{.27}\\{.63}&{ - .24}&{ - .68}&{ - .29}\\{.07}&{ - .63}&{.53}&{ - .56}\\{ - .51}&{.34}&{ - .29}&{ - .73}\end{array}} \right)\)

Therefore, the singular value decomposition of\(A\)is:

\(\begin{array}{c}A = U\sum {V^T}\\ = \left( {\begin{array}{*{20}{c}}{ - .57}&{ - .65}&{ - .42}&{.27}\\{.63}&{ - .24}&{ - .68}&{ - .29}\\{.07}&{ - .63}&{.53}&{ - .56}\\{ - .51}&{.34}&{ - .29}&{ - .73}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16.46}&0&0&0&0\\0&{12.16}&0&0&0\\0&0&{4.87}&0&0\\0&0&0&{4.31}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 10}&{ - .39}&{ - .74}&{.41}&{ - .36}\\{.61}&{.29}&{ - .27}&{ - .50}&{ - .48}\\{ - .21}&{.84}&{ - .07}&{.45}&{ - .19}\\{ - .52}&{ - .14}&{.38}&{ - .23}&{ - .72}\\{.55}&{ - .19}&{.49}&{.58}&{ - .29}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - .57}&{ - .65}&{ - .42}&{.27}\\{.63}&{ - .24}&{ - .68}&{ - .29}\\{.07}&{ - .63}&{.53}&{ - .56}\\{ - .51}&{.34}&{ - .29}&{ - .73}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16.46}&0&0&0&0\\0&{12.16}&0&0&0\\0&0&{4.87}&0&0\\0&0&0&{4.31}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 10}&{.61}&{ - .21}&{ - .52}&{.55}\\{ - .39}&{.29}&{.84}&{ - 1.4}&{ - .19}\\{ - .74}&{ - .27}&{ - .07}&{.38}&{.49}\\{.41}&{ - .50}&{.45}&{ - .23}&{.58}\\{ - .36}&{ - .48}&{ - .19}&{ - .72}&{ - .29}\end{array}} \right)\end{array}\)

Thus, \(A = \left( {\begin{array}{*{20}{c}}{ - .57}&{ - .65}&{ - .42}&{.27}\\{.63}&{ - .24}&{ - .68}&{ - .29}\\{.07}&{ - .63}&{.53}&{ - .56}\\{ - .51}&{.34}&{ - .29}&{ - .73}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16.46}&0&0&0&0\\0&{12.16}&0&0&0\\0&0&{4.87}&0&0\\0&0&0&{4.31}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 10}&{.61}&{ - .21}&{ - .52}&{.55}\\{ - .39}&{.29}&{.84}&{ - 1.4}&{ - .19}\\{ - .74}&{ - .27}&{ - .07}&{.38}&{.49}\\{.41}&{ - .50}&{.45}&{ - .23}&{.58}\\{ - .36}&{ - .48}&{ - .19}&{ - .72}&{ - .29}\end{array}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Question: 13. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Suppose the equation\(A{\rm{x}} = {\rm{b}}\)is consistent, and let\({{\rm{x}}^ + } = {A^ + }{\rm{b}}\). By Exercise 23 in Section 6.3, there is exactly one vector\({\rm{p}}\)in Row\(A\)such that\(A{\rm{p}} = {\rm{b}}\). The following steps prove that\({{\rm{x}}^ + } = {\rm{p}}\)and\({{\rm{x}}^ + }\)is the minimum length solution of\(A{\rm{x}} = {\rm{b}}\).

  1. Show that \({{\rm{x}}^ + }\) is in Row \(A\). (Hint: Write \({\rm{b}}\) as \(A{\rm{x}}\) for some \({\rm{x}}\), and use Exercise 12.)
  2. Show that\({{\rm{x}}^ + }\)is a solution of\(A{\rm{x}} = {\rm{b}}\).
  3. Show that if \({\rm{u}}\) is any solution of \(A{\rm{x}} = {\rm{b}}\), then \(\left\| {{{\rm{x}}^ + }} \right\| \le \left\| {\rm{u}} \right\|\), with equality only if \({\rm{u}} = {{\rm{x}}^ + }\).

Determine which of the matrices in Exercises 1–6 are symmetric.

4. \(\left( {\begin{aligned}{{}}0&8&3\\8&0&{ - 4}\\3&2&0\end{aligned}} \right)\)

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

7. \(\left( {\begin{aligned}{{}{}}{.6}&{\,\,\,.8}\\{.8}&{ - .6}\end{aligned}} \right)\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

22. \(\left( {\begin{aligned}{{}}4&0&1&0\\0&4&0&1\\1&0&4&0\\0&1&0&4\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free