Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).

6. \(\left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}&{\bf{0}}\\{\bf{0}}&{ - {\bf{2}}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues and eigenvectors of the given matrix

Let \(A = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\)

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A = \left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\left( {\begin{aligned}{{}}{ - 3}&0\\0&{ - 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{{}}9&0\\0&4\end{aligned}} \right)\end{aligned}\)

So, the eigenvalues of the matrix are 9 and 4. The eigenvectors can be calculated as,

\(\begin{aligned}{}\left( {\begin{aligned}{{}}9&0\\0&4\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\9{x_1} = 0\\4{x_2} = 0\end{aligned}\)

So, the eigenvectors of the matrix are\(\left( {\begin{aligned}{{}}1\\0\end{aligned}} \right)\) and \(\left( {\begin{aligned}{{}}0\\1\end{aligned}} \right)\).

03

Find the value of

The singular value is the square root of eigenvalues of \({A^T}A\) , that are, 3 and 2. Thus the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\)

04

Find the matrix U

Consider the following equations:

\(\begin{array}{c}\Sigma U = AV\\\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{y_1}}&{{y_3}}\\{{y_2}}&{{y_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 3}&0\\0&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{3{y_1}}&0\\0&{2{y_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 3}&0\\0&{ - 2}\end{array}} \right)\end{array}\)

On comparing two sides of the equation \({y_1} = - 1\), \({y_2} = 0\), \({y_3} = 0\) and \({y_4} = - 1\)

The matrix U can be written as,

\(U = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right)\)

Then by using \(A = U\sum {V^T}\).

\(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)

Hence, the SVD of A can be written as, \(A = \left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the principal components of the data for Exercise 2.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

20. \(\left( {\begin{aligned}{{}}5&8&{ - 4}\\8&5&{ - 4}\\{ - 4}&{ - 4}&{ - 1}\end{aligned}} \right)\)

Question: Mark Each statement True or False. Justify each answer. In each part, A represents an \(n \times n\) matrix.

  1. If A is orthogonally diagonizable, then A is symmetric.
  2. If A is an orthogonal matrix, then A is symmetric.
  3. If A is an orthogonal matrix, then \(\left\| {A{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).
  4. The principal axes of a quadratic from \({{\bf{x}}^T}A{\bf{x}}\) can be the columns of any matrix P that diagonalizes A.
  5. If P is an \(n \times n\) matrix with orthogonal columns, then \({P^T} = {P^{ - {\bf{1}}}}\).
  6. If every coefficient in a quadratic form is positive, then the quadratic form is positive definite.
  7. If \({{\bf{x}}^T}A{\bf{x}} > {\bf{0}}\) for some x, then the quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is positive definite.
  8. By a suitable change of variable, any quadratic form can be changed into one with no cross-product term.
  9. The largest value of a quadratic form \({{\bf{x}}^T}A{\bf{x}}\), for \(\left\| {\bf{x}} \right\| = {\bf{1}}\) is the largest entery on the diagonal A.
  10. The maximum value of a positive definite quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is the greatest eigenvalue of A.
  11. A positive definite quadratic form can be changed into a negative definite form by a suitable change of variable \({\bf{x}} = P{\bf{u}}\), for some orthogonal matrix P.
  12. An indefinite quadratic form is one whose eigenvalues are not definite.
  13. If P is an \(n \times n\) orthogonal matrix, then the change of variable \({\bf{x}} = P{\bf{u}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form whose matrix is \({P^{ - {\bf{1}}}}AP\).
  14. If U is \(m \times n\) with orthogonal columns, then \(U{U^T}{\bf{x}}\) is the orthogonal projection of x onto ColU.
  15. If B is \(m \times n\) and x is a unit vector in \({\mathbb{R}^n}\), then \(\left\| {B{\bf{x}}} \right\| \le {\sigma _{\bf{1}}}\), where \({\sigma _{\bf{1}}}\) is the first singular value of B.
  16. A singular value decomposition of an \(m \times n\) matrix B can be written as \(B = P\Sigma Q\), where P is an \(m \times n\) orthogonal matrix and \(\Sigma \) is an \(m \times n\) diagonal matrix.
  17. If A is \(n \times n\), then A and \({A^T}A\) have the same singular values.

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

17. Show that if \(A\) is square, then \(\left| {{\bf{det}}A} \right|\) is the product of the singular values of \(A\).

Compute the quadratic form \({x^T}Ax\), when \(A = \left( {\begin{aligned}{{}}3&2&0\\2&2&1\\0&1&0\end{aligned}} \right)\) and

a. \(x = \left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)\)

b. \(x = \left( {\begin{aligned}{{}}{ - 2}\\{ - 1}\\5\end{aligned}} \right)\)

c. \(x = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free