Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).)

8. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{6}}\\{\bf{0}}&{\bf{4}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\)

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues of the given matrix

Let \(A = \left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{array}{*{20}{c}}4&0\\6&4\end{array}} \right)\)

Find the product \({A^T}A\).

\(\begin{array}{c}{A^T}A = \left( {\begin{array}{*{20}{c}}4&0\\6&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{16}&{24}\\{24}&{52}\end{array}} \right)\end{array}\)

The characteristic equation for \({A^T}A\) is:

\(\begin{array}{c}\det \left| {{A^T}A - \lambda I} \right| = 0\\\left| {\begin{array}{*{20}{c}}{16 - \lambda }&{24}\\{24}&{52 - \lambda }\end{array}} \right| = 0\\\left( {16 - \lambda } \right)\left( {52 - \lambda } \right) - 576 = 0\\{\lambda ^2} - 68\lambda + 256 = 0\\\lambda = 64,4\end{array}\)

03

Find the eigenvectors of the given matrix

The eigenvectors of the matrix for \(\lambda = 64\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}{ - 48}&{24}\\{24}&{ - 12}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\ - 48{x_1} + 24{x_2} = 0\\24{x_1} - 12{x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{\frac{1}{2}}\\1\end{array}} \right)\;{\rm{or}}\,\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\)

The eigenvectors of the matrix for \(\lambda = 4\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}{12}&{24}\\{24}&{48}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\12{x_1} + 24{x_2} = 0\\24{x_1} + 48{x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \,\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\)

04

Find the Eigenvector matrix

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_1} = \frac{1}{{\sqrt {{1^2} + {2^2}} }}\left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_2} = \frac{1}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2}} }}\left( {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The eigenvector matrix is:

\(\begin{array}{c}V = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{ - \frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

05

Find the value of \(\Sigma \)

The singular value is the square root of eigenvalues of \({A^T}A\), that are 8 and 2. Thus the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\)

06

Find the matrix U

Compute the column vectors \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\):

\(\begin{array}{c}{{\bf{u}}_1} = \frac{1}{{\sqrt {{\lambda _1}} }}A{{\bf{v}}_1}\\ = \frac{1}{{\sqrt {64} }}\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

And

\(\begin{array}{c}{{\bf{u}}_2} = \frac{1}{{\sqrt {{\lambda _2}} }}A{{\bf{v}}_2}\\ = \frac{1}{{\sqrt 4 }}\left( {\begin{array}{*{20}{c}}4&6\\0&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{2}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - \frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The matrix Ucan be determined as follows:

\(\begin{array}{c}U = \left( {\begin{array}{*{20}{c}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

The SVD of A can be written as,

\(\begin{array}{c}A = U\Sigma {V^T}\\ = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\end{array}\)

Hence, the SVD of the given matrix is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{2}{{\sqrt 5 }}}&{ - \frac{1}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}8&0\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{ - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

21. Justify the statement in Example 2 that the second singular value of a matrix \(A\) is the maximum of \(\left\| {A{\bf{x}}} \right\|\) as \({\bf{x}}\) varies over all unit vectors orthogonal to \({{\bf{v}}_{\bf{1}}}\), with \({{\bf{v}}_{\bf{1}}}\) a right singular vector corresponding to the first singular value of \(A\). (Hint: Use Theorem 7 in Section 7.3.)

Question: Find the principal components of the data for Exercise 2.

Question: Mark Each statement True or False. Justify each answer. In each part, A represents an \(n \times n\) matrix.

  1. If A is orthogonally diagonizable, then A is symmetric.
  2. If A is an orthogonal matrix, then A is symmetric.
  3. If A is an orthogonal matrix, then \(\left\| {A{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).
  4. The principal axes of a quadratic from \({{\bf{x}}^T}A{\bf{x}}\) can be the columns of any matrix P that diagonalizes A.
  5. If P is an \(n \times n\) matrix with orthogonal columns, then \({P^T} = {P^{ - {\bf{1}}}}\).
  6. If every coefficient in a quadratic form is positive, then the quadratic form is positive definite.
  7. If \({{\bf{x}}^T}A{\bf{x}} > {\bf{0}}\) for some x, then the quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is positive definite.
  8. By a suitable change of variable, any quadratic form can be changed into one with no cross-product term.
  9. The largest value of a quadratic form \({{\bf{x}}^T}A{\bf{x}}\), for \(\left\| {\bf{x}} \right\| = {\bf{1}}\) is the largest entery on the diagonal A.
  10. The maximum value of a positive definite quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is the greatest eigenvalue of A.
  11. A positive definite quadratic form can be changed into a negative definite form by a suitable change of variable \({\bf{x}} = P{\bf{u}}\), for some orthogonal matrix P.
  12. An indefinite quadratic form is one whose eigenvalues are not definite.
  13. If P is an \(n \times n\) orthogonal matrix, then the change of variable \({\bf{x}} = P{\bf{u}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form whose matrix is \({P^{ - {\bf{1}}}}AP\).
  14. If U is \(m \times n\) with orthogonal columns, then \(U{U^T}{\bf{x}}\) is the orthogonal projection of x onto ColU.
  15. If B is \(m \times n\) and x is a unit vector in \({\mathbb{R}^n}\), then \(\left\| {B{\bf{x}}} \right\| \le {\sigma _{\bf{1}}}\), where \({\sigma _{\bf{1}}}\) is the first singular value of B.
  16. A singular value decomposition of an \(m \times n\) matrix B can be written as \(B = P\Sigma Q\), where P is an \(m \times n\) orthogonal matrix and \(\Sigma \) is an \(m \times n\) diagonal matrix.
  17. If A is \(n \times n\), then A and \({A^T}A\) have the same singular values.

In Exercises 25 and 26, mark each statement True or False. Justify each answer.

a. An\(n \times n\)matrix that is orthogonally diagonalizable must be symmetric.

b. If\({A^T} = A\)and if vectors\({\rm{u}}\)and\({\rm{v}}\)satisfy\(A{\rm{u}} = {\rm{3u}}\)and\(A{\rm{v}} = {\rm{3v}}\), then\({\rm{u}} \cdot {\rm{v}} = {\rm{0}}\).

c. An\(n \times n\)symmetric matrix has n distinct real eigenvalues.

d. For a nonzero \({\rm{v}}\) in \({\mathbb{R}^n}\) , the matrix \({\rm{v}}{{\rm{v}}^T}\) is called a projection matrix.

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(2.\,\,\left( {\begin{array}{*{20}{c}}1&5&2&6&7&3\\3&{11}&6&8&{15}&{11}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free