Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.

Short Answer

Expert verified

The matrix Pis \(P = \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\).

The new quadratic form is \(6y_1^2 - 4y_2^2\).

Step by step solution

01

Find the eigenvalues of the coefficient matrix of the quadratic equation

The coefficient matrix for the equation \(x_1^2 + 10{x_1}{x_2} + x_2^2\) is shown below:

\(A = \left( {\begin{aligned}{{}{}}1&5\\5&1\end{aligned}} \right)\)

The characteristic equation of A can be written as:

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left| {\begin{aligned}{{}{}}{1 - \lambda }&5\\5&{1 - \lambda }\end{aligned}} \right| &= 0\\{\left( {1 - \lambda } \right)^2} - 25 &= 0\\\lambda &= 6, - 4\end{aligned}\)

02

Find the eigen vector of matrix A

Find the eigenvector for \(\lambda = 6\):

\(\begin{aligned}{}\left( {A - 6I} \right)X &= 0\\\left( {\begin{aligned}{{}{}}{ - 5}&5\\5&{ - 5}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}{}}0\\0\end{aligned}} \right)\\ - 5{x_1} + 5{x_2} &= 0\\{x_1} - {x_2} &= 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}1\\1\end{aligned}} \right)\).

Find the eigenvector for \(\lambda = - 4\):

\(\begin{aligned}{}\left( {A + 4I} \right)X &= 0\\\left( {\begin{aligned}{{}{}}5&5\\5&5\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}{}}0\\0\end{aligned}} \right)\\5{x_1} + 5{x_2} &= 0\\{x_1} + {x_2} &= 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}{ - 1}\\1\end{aligned}} \right)\).

03

Find normalized eigenvectors of A

The normalized eigenvectors are:

\(\begin{aligned}{}{{\bf{u}}_1} &= \frac{1}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}{}}1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}{}}{ - 1}\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

04

Write the matrix P and D

Write matrix Pusing the normalized eigenvectors:

\(\begin{aligned}{}P &= \left( {\begin{aligned}{{}{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\end{aligned}\)

Write matrix D using the eigenvalues of A as:

\(D = \left( {\begin{aligned}{{}{}}6&0\\0&{ - 4}\end{aligned}} \right)\)

05

Find the new quadratic form

Consider the expression \({{\bf{x}}^T}A{\bf{x}}\).

\(\begin{aligned}{}{{\bf{x}}^T}A{\bf{x}} &= {\left( {P{\bf{y}}} \right)^T}A\left( {P{\bf{y}}} \right)\\ &= {{\bf{y}}^T}{P^T}AP{\bf{y}}\\ &= {{\bf{y}}^r}D{\bf{y}}\\ &= \left( {\begin{aligned}{{}{}}{{{\bf{y}}_1}}&{{{\bf{y}}_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}6&0\\0&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{{\bf{y}}_1}}\\{{{\bf{y}}_2}}\end{aligned}} \right)\\ &= 6y_1^2 - 4y_2^2\end{aligned}\)

Thus, the new quadratic form is \(6y_1^2 - 4y_2^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine which of the matrices in Exercises 1–6 are symmetric.

2. \(\left( {\begin{aligned}{{}}3&{\,\, - 5}\\{ - 5}&{ - 3}\end{aligned}} \right)\)

Question:Repeat Exercise 7 for the data in Exercise 2.

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

15. \(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 3}&{ - 6}&6&{\,\,1}\\{ - 1}&{ - 1}&{ - 1}&1&{ - 2}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\end{array}} \right]\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

23. Let \(U = \left( {{u_1}...{u_m}} \right)\) and \(V = \left( {{v_1}...{v_n}} \right)\) where the \({{\bf{u}}_i}\) and \({{\bf{v}}_i}\) are in Theorem 10. Show that \(A = {\sigma _1}{u_1}v_1^T + {\sigma _2}{u_2}v_2^T + ... + {\sigma _r}{u_r}v_r^T\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free