Let A be the matrix of the quadratic form

\({\bf{9}}x_{\bf{1}}^{\bf{2}} + {\bf{7}}x_{\bf{2}}^{\bf{2}} + {\bf{11}}x_{\bf{3}}^{\bf{2}} - {\bf{8}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{8}}{x_{\bf{1}}}{x_{\bf{3}}}\)

It can be shown that the eigenvalues of A are 3,9, and 15. Find an orthogonal matrix P such that the change of variable \({\bf{x}} = P{\bf{y}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form which no cross-product term. Give P and the new quadratic form.

Short Answer

Expert verified

The matrix Pis \(P = \left( {\begin{aligned}{{}}{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}\\{ - \frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}\\{\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\end{aligned}} \right)\).

The new quadratic form is \(3y_1^2 + 9y_2^2 + 15y_3^2\).

Step by step solution

01

Find the eigenvalues of the coefficient matrix of the quadratic equation

The coefficient matrix for the equation \(9x_1^2 + + 7x_2^2 + 11x_3^2 - 8{x_1}{x_2} + 8{x_1}{x_3}\) is shown as:

\(A = \left( {\begin{aligned}{{}}9&{ - 4}&4\\{ - 4}&7&0\\4&0&{11}\end{aligned}} \right)\)

The characteristic equation of A can be written as:

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left| {\begin{aligned}{{}}{9 - \lambda }&{ - 4}&4\\{ - 4}&{7 - \lambda }&0\\4&0&{11 - \lambda }\end{aligned}} \right| &= 0\\\left( {\lambda - 3} \right)\left( {\lambda - 9} \right)\left( {\lambda - 15} \right) &= 0\\\lambda &= 3,9,15\end{aligned}\)

02

Find the eigen vector of matrix A

Find the eigenvector for \(\lambda = 3\):

\(\begin{aligned}{}\left( {A - 3I} \right)X & = 0\\\left( {\begin{aligned}{{}}6&{ - 4}&4\\{ - 4}&4&0\\4&0&8\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\{x_1} + 2{x_3} = 0\\{x_2} + 2{x_3} & = 0\end{aligned}\)

Thus, the general solution of the equation is:

\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}{ - 2}\\{ - 2}\\1\end{aligned}} \right)\)

Find the eigenvector for \(\lambda = 9\):

\(\begin{aligned}{}\left( {A - 9I} \right)X & = 0\\\left( {\begin{aligned}{{}}1&0&{\frac{1}{2}}\\0&1&{ - 1}\\0&0&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\\0\end{aligned}} \right)\\{x_1} + \frac{1}{2}{x_3} & = 0\\{x_2} - {x_3} & = 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\1\\1\end{aligned}} \right)\).

Find the eigenvector for \(\lambda = 15\):

\(\begin{aligned}{}\left( {A - 15I} \right)X & = 0\\\left( {\begin{aligned}{{}}{ - 6}&{ - 4}&4\\{ - 4}&{ - 8}&0\\4&0&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}}0\\0\\0\end{aligned}} \right)\\ - 6{x_1} - 4{x_2} + 4{x_3} & = 0\\ - 4{x_1} - 8{x_2} & = 0\\4{x_1} - 3{x_2} & = 0\end{aligned}\)

Thus, the general solution of the equation is\(\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{{}}2\\{ - 1}\\2\end{aligned}} \right)\).

03

Find normalized eigen vectors of A

The normalized eigenvectors are shown below:

\(\begin{aligned}{}{{\bf{u}}_1} & = \frac{1}{{\sqrt {\left( { - 2} \right) + {{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}}{ - 2}\\{ - 2}\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{ - \frac{2}{3}}\\{ - \frac{2}{3}}\\{\frac{1}{3}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_2} &= \frac{1}{{\sqrt {{{\left( { - \frac{1}{2}} \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }}\left( {\begin{aligned}{{}}{ - \frac{1}{2}}\\1\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{1}{3}}\\{\frac{2}{3}}\\{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

And,

\(\begin{aligned}{}{{\bf{u}}_3} &= \frac{1}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2}} }}\left( {\begin{aligned}{{}}2\\{ - 1}\\2\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\frac{2}{3}}\\{ - \frac{1}{3}}\\{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

04

Write the matrix P and D

Write matrix Pusing the normalized eigenvectors:

\(\begin{aligned}{}P &= \left( {\begin{aligned}{{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}&{{{\bf{u}}_3}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}\\{ - \frac{2}{3}}&{\frac{2}{3}}&{ - \frac{1}{3}}\\{\frac{1}{3}}&{\frac{2}{3}}&{\frac{2}{3}}\end{aligned}} \right)\end{aligned}\)

Write matrix D using the eigenvalues of A.

\(D = \left( {\begin{aligned}{{}}3&0&0\\0&9&0\\0&0&{15}\end{aligned}} \right)\)

05

Find the new quadratic form

Consider the expression \({{\bf{x}}^T}A{\bf{x}}\).

\(\begin{aligned}{}{{\bf{x}}^T}A{\bf{x}} &= {\left( {P{\bf{y}}} \right)^T}A\left( {P{\bf{y}}} \right)\\ &= {{\bf{y}}^T}{P^T}AP{\bf{y}}\\ &= {{\bf{y}}^r}D{\bf{y}}\\ &= \left( {\begin{aligned}{{}}{{y_1}}&{{y_2}}&{{y_3}}\end{aligned}} \right)\left( {\begin{aligned}{{}}3&0&0\\0&9&0\\0&0&{15}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\\{{y_3}}\end{aligned}} \right)\\ &= 3y_1^2 + 9y_2^2 + 15y_3^2\end{aligned}\)

Thus, the new quadratic form is \(3y_1^2 + 9y_2^2 + 15y_3^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Find the matrix of the quadratic form. Assume x is in \({\mathbb{R}^2}\).

a. \(3x_1^2 + 2x_2^2 - 5x_3^2 - 6{x_1}{x_2} + 8{x_1}{x_3} - 4{x_2}{x_3}\)

b. \(6{x_1}{x_2} + 4{x_1}{x_3} - 10{x_2}{x_3}\)

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(1.\,\,\left( {\begin{array}{*{20}{c}}{19}&{22}&6&3&2&{20}\\{12}&6&9&{15}&{13}&5\end{array}} \right)\)

Question: 12. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Verify the properties of\({A^ + }\):

a. For each\({\rm{y}}\)in\({\mathbb{R}^m}\),\(A{A^ + }{\rm{y}}\)is the orthogonal projection of\({\rm{y}}\)onto\({\rm{Col}}\,A\).

b. For each\({\rm{x}}\)in\({\mathbb{R}^n}\),\({A^ + }A{\rm{x}}\)is the orthogonal projection of\({\rm{x}}\)onto\({\rm{Row}}\,A\).

c. \(A{A^ + }A = A\)and \({A^ + }A{A^ + } = {A^ + }\).

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free