Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{0}}\end{array}} \right]\), and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1} = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\end{array}} \right]\), and\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{array}} \right]\), with respect to S.
  3. Let\(T\)be the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). When the sides of\(T\)are extended, the lines divide\({\mathbb{R}^{\bf{2}}}\)into seven regions. See Figure 8. Note the signs of the barycentric coordinates of the points in each region. For example,\({{\bf{p}}_{\bf{5}}}\)is inside the triangle\(T\)and all its barycentric coordinates are positive. Point\({{\bf{p}}_{\bf{1}}}\)has coordinates\(\left( { - , + , + } \right)\). Its third coordinate is positive because\({{\bf{p}}_{\bf{1}}}\)is on the\({{\bf{v}}_{\bf{3}}}\)side of the line through\({{\bf{v}}_{\bf{1}}}\)and\({{\bf{v}}_{\bf{2}}}\). Its first coordinate is negative because\({{\bf{p}}_{\bf{1}}}\)is opposite the\({{\bf{v}}_{\bf{1}}}\)side of the line through\({{\bf{v}}_{\bf{2}}}\)and\({{\bf{v}}_{\bf{3}}}\). Point\({{\bf{p}}_{\bf{2}}}\)is on the\({{\bf{v}}_{\bf{2}}}{{\bf{v}}_{\bf{3}}}\)edge of\(T\). Its coordinates are\(\left( {0, + , + } \right)\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({{\bf{p}}_{\bf{6}}}\),\({{\bf{p}}_{\bf{7}}}\), and\({{\bf{p}}_{\bf{8}}}\)as shown in Figure 8.

Short Answer

Expert verified
  1. The set is affinely independent.
  2. The barycentric coordinates of points are\({{\bf{p}}_1} \leftrightarrow \left( { - \frac{6}{8},\frac{9}{8},\frac{5}{8}} \right)\),\({{\bf{p}}_2} \leftrightarrow \left( {0,\frac{1}{2},\frac{1}{2}} \right)\), \({{\bf{p}}_3} \leftrightarrow \left( {\frac{{14}}{8}, - \frac{5}{8}, - \frac{1}{8}} \right)\), \({{\bf{p}}_4} \leftrightarrow \left( {\frac{6}{8}, - \frac{5}{8},\frac{7}{8}} \right)\), and \({{\bf{p}}_5} \leftrightarrow \left( {\frac{1}{4},\frac{1}{8},\frac{5}{8}} \right)\).
  3. The signs of the barycentric points are \({{\bf{p}}_6} \leftrightarrow \left( { - , - , + } \right)\), \({{\bf{p}}_7} \leftrightarrow \left( {0, + , - } \right)\), and \({{\bf{p}}_8} \leftrightarrow \left( { + , + , - } \right)\).

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set\(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\)in the dimension\({\mathbb{R}^n}\)exists such that for non-zero scalars\({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e.\({c_1} + {c_2} + ... + {c_p} = 0\), and\({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

(a)

02

Show affinely independence

Consider the set of vectors\(S = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_3}} \right\}\), where\({{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({{\bf{v}}_2} = \left[ {\begin{array}{*{20}{c}}0\\4\end{array}} \right]\), and\({{\bf{v}}_3} = \left[ {\begin{array}{*{20}{c}}2\\0\end{array}} \right]\).

Let the newpoints, \({{\bf{v}}_3} - {{\bf{v}}_1}\) and \({{\bf{v}}_2} - {{\bf{v}}_1}\), be obtained by eliminating the first point.

\(\begin{array}{c}{{\bf{v}}_3} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}2\\0\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}3\\{ - 2}\end{array}} \right]\end{array}\)

And

\(\begin{array}{c}{{\bf{v}}_2} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}0\\4\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\end{array}\)

It is observed that \({{\bf{v}}_2} - {{\bf{v}}_1}\) and \({{\bf{v}}_3} - {{\bf{v}}_1}\) are not proportional or multiples of each other. They are linearly independent. Also, the sum of weights cannot be 0.

Thus, the indexed set \(S\)is affinely independent.

(b)

03

State the barycentric coordinates of points

Obtain the barycentric coordinates of points using the vectors\({{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({{\bf{v}}_2} = \left[ {\begin{array}{*{20}{c}}0\\4\end{array}} \right]\),\({{\bf{v}}_3} = \left[ {\begin{array}{*{20}{c}}2\\0\end{array}} \right]\), and the points\({{\bf{p}}_1} = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\),\({{\bf{p}}_2} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\),\({{\bf{p}}_3} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\1\end{array}} \right]\),\[{{\bf{p}}_4} = \left[ {\begin{array}{*{20}{c}}1\\{ - 1}\end{array}} \right]\], and\({{\bf{p}}_5} = \left[ {\begin{array}{*{20}{c}}1\\1\end{array}} \right]\)as shown below:

Construct an augmented matrix using the above vectors and points.

\(M = \left[ {\begin{array}{*{20}{c}}{ - 1}&0&2&2&1&{ - 2}&1&1\\2&4&0&3&2&1&{ - 1}&1\\1&1&1&1&1&1&1&1\end{array}} \right]\)

Obtain the row-reduced echelon form as shown below:

Interchange rows 1 and 2.

\(M = \left[ {\begin{array}{*{20}{c}}2&4&0&3&2&1&{ - 1}&1\\{ - 1}&0&2&2&1&{ - 2}&1&1\\1&1&1&1&1&1&1&1\end{array}} \right]\)

Multiply row 1 by\(\frac{1}{2}\)to get row 1.

\(M = \left[ {\begin{array}{*{20}{c}}1&2&0&{3/2}&1&{1/2}&{ - 1/2}&{1/2}\\{ - 1}&0&2&2&1&{ - 2}&1&1\\1&1&1&1&1&1&1&1\end{array}} \right]\)

Add rows 1 and 2 to get row 2. Then, add\( - 1\)times row 1 to row 3 to get row 3.

\(M = \left[ {\begin{array}{*{20}{c}}1&2&0&{3/2}&1&{1/2}&{ - 1/2}&{1/2}\\0&1&1&{7/4}&1&{ - 3/4}&{1/4}&{3/4}\\0&0&2&{5/4}&1&{ - 1/4}&{7/4}&{5/4}\end{array}} \right]\)

Multiply row 3 by\(\frac{1}{2}\)to get row 3.

\(M = \left[ {\begin{array}{*{20}{c}}1&2&0&{3/2}&1&{1/2}&{ - 1/2}&{1/2}\\0&1&1&{7/4}&1&{ - 3/4}&{1/4}&{3/4}\\0&0&1&{5/8}&{1/2}&{ - 1/8}&{7/8}&{5/8}\end{array}} \right]\)

Add\( - 1\)times row 3 to row 2 to get row 2. Then, add\( - 2\)times row 2 to row 1 to get row 1.

\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&{ - 6/8}&0&{14/8}&{6/8}&{1/4}\\0&1&0&{9/8}&{1/2}&{ - 5/8}&{ - 5/8}&{1/8}\\0&0&1&{5/8}&{1/2}&{ - 1/8}&{7/8}&{5/8}\end{array}} \right]\)

Thus, the barycentric coordinates of points are\({{\bf{p}}_1} \leftrightarrow \left( { - \frac{6}{8},\frac{9}{8},\frac{5}{8}} \right)\),\({{\bf{p}}_2} \leftrightarrow \left( {0,\frac{1}{2},\frac{1}{2}} \right)\), \({{\bf{p}}_3} \leftrightarrow \left( {\frac{{14}}{8}, - \frac{5}{8}, - \frac{1}{8}} \right)\), \({{\bf{p}}_4} \leftrightarrow \left( {\frac{6}{8}, - \frac{5}{8},\frac{7}{8}} \right)\), and \({{\bf{p}}_5} \leftrightarrow \left( {\frac{1}{4},\frac{1}{8},\frac{5}{8}} \right)\).

(c)

04

Find the signs of the barycentric coordinates

To obtain the signs of the coordinates \({{\bf{p}}_6}\), \({{\bf{p}}_7}\), and \({{\bf{p}}_8}\), observe the given figure:

Point\({{\bf{p}}_6}\)should have the coordinates\(\left( { - , - , + } \right)\)because it lies outside the triangle. Also, the third coordinate is positive because\({{\bf{p}}_6}\)is on the\({{\bf{v}}_3}\)side of the line through vectors\({{\bf{v}}_1}\)and\({{\bf{v}}_2}\).

Point\({{\bf{p}}_7}\)should have the coordinates\(\left( {0, + , - } \right)\)because it lies outside the triangle. Also, the second coordinate is positive because\({{\bf{p}}_7}\)is on the\({{\bf{v}}_1}\)side of the line through vectors\({{\bf{v}}_2}\)and\({{\bf{v}}_3}\).

Point\({{\bf{p}}_8}\)should have the coordinates\(\left( { + , + , - } \right)\)because it lies outside the triangle. Also, the first and second coordinates are positive because\({{\bf{p}}_8}\)is on the\({{\bf{v}}_1}\)side of the line through vectors\({{\bf{v}}_2}\)and\({{\bf{v}}_3}\).

Therefore, the signs of the barycentric points are \({{\bf{p}}_6} \leftrightarrow \left( { - , - , + } \right)\), \({{\bf{p}}_7} \leftrightarrow \left( {0, + , - } \right)\), and \({{\bf{p}}_8} \leftrightarrow \left( { + , + , - } \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\\{ - {\bf{2}}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{6}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{{\bf{17}}}\\{\bf{1}}\\{\bf{5}}\end{aligned}} \right)\)

Let \({\bf{x}}\left( t \right)\) be a cubic Bézier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]

Question:28. Give an example of a compact set\(A\)and a closed set\(B\)in\({\mathbb{R}^2}\)such that\(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) = \emptyset \)but\(A\)and\(B\)cannot be strictly separated by a hyperplane.

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

25. \({\mathop{\rm aff}\nolimits} \left( {A \cap B} \right) \subset \left( {{\mathop{\rm aff}\nolimits} A \cap {\mathop{\rm aff}\nolimits} B} \right)\)

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free