Suppose that\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is an affinely independent set in\({\mathbb{R}^{\bf{n}}}\)and q is an arbitrary point in\({\mathbb{R}^{\bf{n}}}\). Show that the translated set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)is also affinely independent.

Short Answer

Expert verified

The translated set is also affinely independent.

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension \({\mathbb{R}^n}\) exists such that for non-zero scalars \({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e. \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Show affinely dependence 

The set is affinely dependent if the set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)in\({\mathbb{R}^n}\)exists such that for non-zero scalars\({c_1},{c_2}\)and\({c_3}\)the is zero i.e.\({c_1} + {c_2} + {c_3} = 0\).

So,\({c_1}\left( {{p_1} + q} \right) + {c_2}\left( {{p_2} + q} \right) + {c_3}\left( {{p_3} + q} \right) = 0\).

Simplify\({c_1}\left( {{p_1} + q} \right) + {c_2}\left( {{p_2} + q} \right) + {c_3}\left( {{p_3} + q} \right) = 0\)as shown below:

\(\begin{array}{c}{c_1}{p_1} + {c_1}q + {c_2}{p_2} + {c_2}q + {c_3}{p_3} + {c_3}q = 0\\{c_1}{p_1} + {c_2}{p_2} + {c_3}{p_3} + \left( {{c_1} + {c_2} + {c_3}} \right){\bf{q}} = 0\end{array}\)

As\({c_1} + {c_2} + {c_3} = 0\),\({c_1}{p_1} + {c_2}{p_2} + {c_3}{p_3} = 0\).

Thus,\({c_1}{{\bf{p}}_1} + {c_2}{{\bf{p}}_2} + {c_3}{{\bf{p}}_3} = 0\)and\({c_1} + {c_2} + {c_3} = 0\)show that\(S = \left\{ {{p_1},{p_2},{p_3}} \right\}\) is an affinely dependent set of points in \({\mathbb{R}^n}\).

But\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is affinely independent. Thus, the translated set is also affinely independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free