In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

21. Show that the area of\(\Delta {\bf{abc}}\)is\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]/2\).

[Hint:Consult Sections 3.2 and 3.3, including the Exercises.]

Short Answer

Expert verified

The area of\(\Delta {\rm{abc}}\)is\(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\rm{a}} }&{\overrightarrow {\rm{b}} }&{\overrightarrow {\rm{c}} }\end{array}} \right]/2\).

Step by step solution

01

State the vertices of the triangle

Let\({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{{a_1}}\\{{a_2}}\end{array}} \right]\),\({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{{b_1}}\\{{b_2}}\end{array}} \right]\), and \({\bf{c}} = \left[ {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\end{array}} \right]\) be the vertices of \(\Delta {\rm{abc}}\).

Then,\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)can be represented as shown below:

\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right]\)

02

Find the area of the triangle 

The area of the triangle can be determined as shown below:

\(\begin{array}{c}{\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\left[ {\left( {{\rm{a}} \times {\rm{b}}} \right) + \left( {{\rm{b}} \times {\rm{c}}} \right) + \left( {{\rm{c}} \times {\rm{a}}} \right)} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ {\left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{b}}_{\rm{1}}}}&{{{\rm{b}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{b}}_{\rm{1}}}}&{{{\rm{b}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{c}}_{\rm{1}}}}&{{{\rm{c}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{{{\rm{c}}_{\rm{1}}}}&{{{\rm{c}}_{\rm{2}}}}&{\rm{0}}\\{{{\rm{a}}_{\rm{1}}}}&{{{\rm{a}}_{\rm{2}}}}&{\rm{0}}\end{array}} \right|} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ \begin{array}{l}\left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}}\\ + \left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}}\\ + \left( {0 - 0} \right){\bf{i}} - \left( {0 - 0} \right){\bf{j}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}\end{array} \right] \cdot {\bf{k}}\\{\rm{ = }}\frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}} \right] \cdot {\bf{k}}\end{array}\)

Simplify further as shown below:

\(\begin{array}{c}{\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right){\bf{k}} + \left( {{b_1}{c_2} - {b_2}{c_1}} \right){\bf{k}} + \left( {{c_1}{a_2} - {a_1}{c_2}} \right){\bf{k}}} \right] \cdot {\bf{k}}\\ = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right) + \left( {{b_1}{c_2} - {b_2}{c_1}} \right) + \left( {{c_1}{a_2} - {a_1}{c_2}} \right)} \right] \cdot {\bf{k}} \cdot {\bf{k}}\\ = \frac{1}{2}\left[ {\left( {{a_1}{b_2} - {a_2}{b_1}} \right) + \left( {{b_1}{c_2} - {b_2}{c_1}} \right) + \left( {{c_1}{a_2} - {a_1}{c_2}} \right)} \right]\\ = \frac{1}{2}\det \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right]\end{array}\)

Here, \(\det \left[ {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\1&1&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\).

Thus, \({\rm{ar}}\left( {\Delta {\rm{abc}}} \right) = \frac{1}{2}\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\).

Hence, it is proved that the area of \(\Delta {\rm{abc}}\) is \(\det \left[ {\begin{array}{*{20}{c}}{\overrightarrow {\rm{a}} }&{\overrightarrow {\rm{b}} }&{\overrightarrow {\rm{c}} }\end{array}} \right]/2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21–24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

Question 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)

A quartic Bézier curve is determined by five control points,

\({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{\rm{ }}{{\bf{p}}_{\bf{1}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{2}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{3}}}\)and \({{\bf{p}}_4}\):

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^4}{{\bf{p}}_0} + 4t{\left( {1 - t} \right)^3}{{\bf{p}}_1} + 6{t^2}{\left( {1 - t} \right)^2}{{\bf{p}}_2} + 4{t^3}\left( {1 - t} \right){{\bf{p}}_3} + {t^4}{{\bf{p}}_4}\)for \(0 \le t \le 1\)

Construct the quartic basis matrix \({M_B}\) for \({\bf{x}}\left( t \right)\).

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

22. If \(A \subset B\), then \(affA \subset aff B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free