Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?

Short Answer

Expert verified

The point is \({\bf{x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}{5.6}\\6\\{ - 3.4}\end{array}} \right]\), andthe intersection point is not inside the triangle.

Step by step solution

01

Explain the intersection of the plane with the ray

Recall that the typical point in the plane can be written as

\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\).

For the intersection of the plane with the ray, use the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

It becomes as shown:

\(\begin{array}{c}\left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3} = {\bf{a}} + t{\bf{b}}\\{c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\end{array}\)

02

Write the augmented matrix  

Write the equation\({c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\)in the matrix form as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{v_2} - {v_1}}&{{v_3} - {v_1}}&{ - {\bf{b}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{c_2}}\\{{c_3}}\\t\end{array}} \right] = {\bf{a}} - {v_1}\)

Obtain the vectors\({v_2} - {v_1}\)and \({v_3} - {v_1}\) as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}6\\0\\1\end{array}} \right]\)

And

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}2\\6\\4\end{array}} \right]\)

Also, \({\bf{a}} - {v_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\\{15}\end{array}} \right]\)

The augmented matrix is shown below:

\(\left[ {\begin{array}{*{20}{c}}6&2&{ - 1.4}&{ - 1}\\0&6&{ - 1.5}&{ - 3}\\1&4&{3.1}&{15}\end{array}} \right]\)

03

Obtain the constant values 

Row-reduce theechelon form of\(\left[ {\begin{array}{*{20}{c}}6&2&{ - 1.4}&{ - 1}\\0&6&{ - 1.5}&{ - 3}\\1&4&{3.1}&{15}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}6&2&{ - 1.4}&{ - 1}\\0&6&{ - 1.5}&{ - 3}\\1&4&{3.1}&{15}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&4&{3.1}&{15}\\0&6&{ - 1.5}&{ - 3}\\0&{ - 22}&{ - 20}&{ - 91}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&4&{3.1}&{15}\\0&6&{ - 1.5}&{ - 3}\\0&{ - 22}&{ - 20}&{ - 91}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&4&{3.1}&{15}\\0&2&{ - 0.5}&{ - 1}\\0&{ - 22}&{ - 20}&{ - 91}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&4&{3.1}&{15}\\0&2&{ - 0.5}&{ - 1}\\0&{ - 22}&{ - 20}&{ - 91}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{0.6}\\0&2&0&1\\0&0&1&4\end{array}} \right]\)

Thus, the values are

\(\begin{array}{c}{c_2} = 0.6,\\{c_3} = 0.5,\\t = 4.\end{array}\)

Obtain the intersection point using the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

\(\begin{array}{c}{\bf{x}} = {\bf{a}} + 4{\bf{b}}\\ = \left[ {\begin{array}{*{20}{c}}0\\0\\9\end{array}} \right] + 4\left[ {\begin{array}{*{20}{c}}{1.4}\\{1.5}\\{ - 3.1}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{5.6}\\6\\{ - 3.4}\end{array}} \right]\end{array}\)

The equation\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\)becomes as shown below:

\(\begin{array}{c}{\bf{x}} = \left( {1 - 0.6 - 0.5} \right){{\bf{v}}_1} + 0.6{{\bf{v}}_2} + 0.5{{\bf{v}}_3}\\ = - 0.1\left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right] + 0.6\left[ {\begin{array}{*{20}{c}}7\\3\\{ - 5}\end{array}} \right] + 0.5\left[ {\begin{array}{*{20}{c}}3\\9\\{ - 2}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{5.6}\\6\\{ - 3.4}\end{array}} \right]\end{array}\)

From the above coordinate, the firstbarycentric coordinate is negative.

It shows that the intersection point is not inside the triangle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free