Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

Short Answer

Expert verified

The point is \({\bf{x}}\left( t \right) = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\), and the intersection point is inside the triangle.

Step by step solution

01

Explain the intersection of the plane with the ray 

Recall that the typical point in the plane can be written as

\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\).

For the intersection of the plane with the ray, use the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

It becomes as shown:

\(\begin{array}{c}\left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3} = {\bf{a}} + t{\bf{b}}\\{c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\end{array}\)

02

Write the augmented matrix

Write the equation\({c_2}\left( {{v_2} - {v_1}} \right) + {c_3}\left( {{v_3} - {v_1}} \right) + t\left( { - {\bf{b}}} \right) = {\bf{a}} - {v_1}\)in the matrix form as shown below:

\(\left[ {\begin{array}{*{20}{c}}{{v_2} - {v_1}}&{{v_3} - {v_1}}&{ - {\bf{b}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{c_2}}\\{{c_3}}\\t\end{array}} \right] = {\bf{a}} - {v_1}\)

Obtain the vectors\({v_2} - {v_1}\)and \({v_3} - {v_1}\) as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}7\\0\\{ - 1}\end{array}} \right]\)

And

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}2\\8\\2\end{array}} \right]\)

Also, \({\bf{a}} - {{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 2}\\{12}\end{array}} \right]\).

The augmented matrix is shown below:

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right]\)

03

Obtain the constant values 

Row-reduce theechelon form of\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right]\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}7&2&{ - 0.9}&{ - 1}\\0&8&{ - 2}&{ - 2}\\{ - 1}&2&{3.7}&{12}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&8&{ - 2}&{ - 2}\\0&{16}&{25}&{83}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&8&{ - 2}&{ - 2}\\0&{16}&{25}&{83}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&4&{ - 1}&{ - 1}\\0&0&{29}&{87}\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&{ - 3.7}&{ - 12}\\0&4&{ - 1}&{ - 1}\\0&0&{29}&{87}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&{ - 2}&0&{ - 0.9}\\0&4&0&2\\0&0&1&3\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&{ - 2}&0&{ - 0.9}\\0&4&0&2\\0&0&1&3\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{0.1}\\0&1&0&{0.5}\\0&0&1&3\end{array}} \right]\)

Thus, the values are

\(\begin{array}{c}{c_2} = 0.1,\\{c_3} = 0.5,\\t = 3.\end{array}\)

Obtain the intersection point using the equation\({\bf{x}} = {\bf{a}} + t{\bf{b}}\).

\(\begin{array}{c}{\bf{x}} = {\bf{a}} + 3{\bf{b}}\\ = \left[ {\begin{array}{*{20}{c}}0\\0\\8\end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}}{.9}\\{2.0}\\{ - 3.7}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\end{array}\)

The equation\(x = \left( {1 - {c_2} - {c_3}} \right){v_1} + {c_2}{v_2} + {c_3}{v_3}\)becomes as shown below:

\(\begin{array}{c}{\bf{x}} = \left( {1 - 0.1 - 0.5} \right){{\bf{v}}_1} + 0.1{{\bf{v}}_2} + 0.5{{\bf{v}}_3}\\ = 0.4\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 4}\end{array}} \right] + 0.1\left[ {\begin{array}{*{20}{c}}8\\2\\5\end{array}} \right] + 0.5\left[ {\begin{array}{*{20}{c}}3\\{10}\\{ - 2}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{2.7}\\6\\{ - 3.1}\end{array}} \right]\end{array}\)

From the above coordinate, all thebarycentric coordinates are positive.

It shows that the intersection point lies inside the triangle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

Question: 23. Let \({{\bf{v}}_1} = \left( \begin{array}{l}1\\1\end{array} \right)\), \({{\bf{v}}_2} = \left( \begin{array}{l}3\\0\end{array} \right)\), \({{\bf{v}}_3} = \left( \begin{array}{l}5\\3\end{array} \right)\) and \({\bf{p}} = \left( \begin{array}{l}4\\1\end{array} \right)\). Find a hyperplane \(f:d\) (in this case, a line) that strictly separates \({\bf{p}}\) from \({\rm{conv}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{5}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{5}}&{ - {\bf{3}}}&{\bf{0}}&{\bf{6}}\end{array}} \right)\). Note that \({\bf{Nul}}\,\,A\) is in \({\mathbb{R}^{\bf{5}}}\). Let \(H = {\bf{Nul}}\,\,A\).

Question: In Exercise 9, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}1\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\3\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\2\\2\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\1\\1\\1\end{array}} \right)\)

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free