Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

Short Answer

Expert verified

The derivative \({\bf{x}}'\left( t \right)\) is \({\bf{x}}'\left( t \right) = \frac{1}{6}\left[ { - 3{{\left( {1 - t} \right)}^2}{{\bf{p}}_o} + \left( { - 12t + 9{t^2}} \right){{\bf{p}}_1} + \left( { - 9{t^2} + 6t + 3} \right){{\bf{p}}_2} + 3{t^2}{{\bf{p}}_3}} \right]\). The relation with control points is \({\bf{x}}'\left( 0 \right) = \frac{1}{2}\left( {{{\bf{p}}_2} - {{\bf{p}}_o}} \right)\)and \({\bf{x}}'\left( 1 \right) = \frac{1}{2}\left( {{{\bf{p}}_3} - {{\bf{p}}_1}} \right)\).The tangent vector at a point\({{\bf{p}}_o}\)is directed from\({{\bf{p}}_o}\)to\({{\bf{p}}_2}\)and its length is twice the length of\(\frac{1}{2}\left( {{{\bf{p}}_2} - {{\bf{p}}_o}} \right)\). The tangent vector at point\({{\bf{p}}_1}\)is directed from\({{\bf{p}}_1}\)to\({{\bf{p}}_3}\)and its length is twice the length of\(\frac{1}{2}\left( {{{\bf{p}}_3} - {{\bf{p}}_1}} \right)\).

b) The derivative is. The relation with control points is and.

The line segment that points in the direction of x''(0) is shown below:

Step by step solution

01

Find the derivative of the B-Spline curve

The B-spline curveis given as\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ {{{\left( {1 - t} \right)}^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1} + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\).

Its first derivative is shown below:

\(\begin{array}{l}{\bf{x}}\left( t \right) = \frac{1}{6}\left[ {{{\left( {1 - t} \right)}^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1} + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right]\\{\bf{x}}'\left( t \right) = \frac{1}{6}\left[ { - 3{{\left( {1 - t} \right)}^2}{{\bf{p}}_o} + \left( { - 12t + 9{t^2}} \right){{\bf{p}}_1} + \left( { - 9{t^2} + 6t + 3} \right){{\bf{p}}_2} + 3{t^2}{{\bf{p}}_3}} \right]\end{array}\)

02

Find \(x'\left( 0 \right)\), and \(x'\left( 1 \right)\) 

The \({\rm{x'}}\left( 0 \right)\) is calculated as shown below:

\(\begin{array}{c}{\bf{x}}'\left( 0 \right) = \frac{1}{6}\left[ { - 3{{\left( {1 - \left( 0 \right)} \right)}^2}{{\bf{p}}_o} + \left( { - 12\left( 0 \right) + 9{{\left( 0 \right)}^2}} \right){{\bf{p}}_1} + \left( { - 9{{\left( 0 \right)}^2} + 6\left( 0 \right) + 3} \right){{\bf{p}}_2} + 3{{\left( 0 \right)}^2}{{\bf{p}}_3}} \right]\\ = \frac{1}{6}\left( { - 3{{\bf{p}}_o} + 3{{\bf{p}}_{_2}}} \right)\\ = \frac{1}{2}\left( {{{\bf{p}}_2} - {{\bf{p}}_o}} \right)\end{array}\)

The tangent vector at point\({{\bf{p}}_o}\)is directed from\({{\bf{p}}_o}\)to\({{\bf{p}}_2}\)and its length is twice the length of\(\frac{1}{2}\left( {{{\bf{p}}_2} - {{\bf{p}}_o}} \right)\).

The \({\rm{x'}}\left( 1 \right)\)is calculated as shown below:

\(\begin{array}{c}{\bf{x}}'\left( 1 \right) = \frac{1}{6}\left[ { - 3{{\left( {1 - \left( 1 \right)} \right)}^2}{{\bf{p}}_o} + \left( { - 12\left( 1 \right) + 9{{\left( 1 \right)}^2}} \right){{\bf{p}}_1} + \left( { - 9{{\left( 1 \right)}^2} + 6\left( 1 \right) + 3} \right){{\bf{p}}_2} + 3{{\left( 1 \right)}^2}{{\bf{p}}_3}} \right]\\ = \frac{1}{6}\left[ { - 3{{\bf{p}}_1} + 0{{\bf{p}}_2} + 3{{\bf{p}}_3}} \right]\\ = \frac{1}{2}\left( {{{\bf{p}}_3} - {{\bf{p}}_1}} \right)\end{array}\)

The tangent vector at point \({{\bf{p}}_1}\) is directed from \({{\bf{p}}_1}\) to \({{\bf{p}}_3}\) and its length is twice the length of \(\frac{1}{2}\left( {{{\bf{p}}_3} - {{\bf{p}}_1}} \right)\).

03

Find  x''(0), and X''(1)   

The x''(0) is calculated as,


04

Draw the figure

The line segment that points in the direction of x''(0) is shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.

b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.

c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).

d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.

e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Question: 12. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

a. If \(S = \left\{ {\bf{x}} \right\}\), then \({\rm{aff}}\,S\) is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyper plane.

e. A flat through the origin is a subspace.

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free