Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Short Answer

Expert verified

a) The \({C^1}\) continuity is \({{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\), and\({{\bf{p}}_3}\)is the mid-point of the line segment\({{\bf{p}}_2}\)to\({{\bf{p}}_4}\).

b) The line joining \({{\bf{p}}_4}\) and \({{\bf{p}}_2}\) is point \({{\bf{p}}_3}\) only.

Step by step solution

01

Apply the standard parameterization on \(\left\{ {{{\bf{p}}_{\bf{0}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)

For the points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\), \({\rm{x}}\left( t \right)\) has the standard parameterization as \({\bf{x}}\left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_o} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_1} + \left( {3{t^2} - 3{t^3}} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_{\bf{3}}}\).

02

Find the value of \({\bf{x'}}\left( 1 \right)\)

\({\bf{x'}}\left( t \right) = \left( { - 3t + 6t - 3{t^2}} \right){{\bf{p}}_o} + \left( {3 - 12t + 9{t^2}} \right){{\bf{p}}_1} + \left( {6t - 9{t^2}} \right){{\bf{p}}_2} + 3{t^2}{{\bf{p}}_3}\).

So, \(x'\left( 1 \right) = - 3{p_2} + 3{p_3}\) and \(x'\left( 0 \right) = - 3{p_0} + 3{p_1}\).

03

Use \({\bf{x'}}\left( 0 \right)\) to find \({\bf{y'}}\left( 0 \right)\) in accordance with its control points

\(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\)

Replace \({{\bf{p}}_0}\) by \({{\bf{p}}_3}\) and \({{\bf{p}}_1}\) by \({{\bf{p}}_4}\).

So, \({\bf{y}}'\left( 0 \right) = - 3{{\bf{p}}_3} + 3{{\bf{p}}_4}\).

04

Apply \({C^1}\) continuity rule

According to \({C^1}\) continuity, \({\bf{x}}'\left( 0 \right) = {\bf{y}}'\left( 0 \right)\), that is shown below:

\(\begin{array}{c} - 3{{\bf{p}}_3} + 3{{\bf{p}}_4} = - 3{{\bf{p}}_0} + 3{{\bf{p}}_1}\\{{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\end{array}\)

05

Draw a conclusion

It is concluded that\({{\bf{p}}_3}\)is the midpoint of the line joining\({{\bf{p}}_4}\)and\({{\bf{p}}_2}\)as\({{\bf{p}}_3} = \frac{{\left( {{{\bf{p}}_4} + {{\bf{p}}_2}} \right)}}{2}\), which is the required condition of part (a).

If\({\bf{x}}'\left( 1 \right) = {\bf{y}}'\left( 0 \right) = 0\), \({{\bf{p}}_2} = {{\bf{p}}_3} = {{\bf{p}}_4}\), as\({\bf{x'}}\left( 1 \right) = - 3{{\bf{p}}_2} + 3{{\bf{p}}_3}\), and \({\bf{y'}}\left( 0 \right) = - 3{{\bf{p}}_3} + 3{{\bf{p}}_4}\).

This concludes that the line joining \({{\bf{p}}_4}\) and \({{\bf{p}}_2}\) is \({{\bf{p}}_3}\) only, which is the required condition of part (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\\{ - {\bf{2}}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{6}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{{\bf{17}}}\\{\bf{1}}\\{\bf{5}}\end{aligned}} \right)\)

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free