Repeat Exercise 9 for the points \({{\bf{q}}_{\bf{1}}}\),….\({{\bf{q}}_{\bf{5}}}\) whose barycentric coordinates with respect to S are given by \(\left( {\frac{{\bf{1}}}{{\bf{8}}},\frac{{\bf{1}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{8}}},\frac{{\bf{1}}}{{\bf{2}}}} \right)\), \(\left( {\frac{{\bf{3}}}{{\bf{4}}}, - \frac{{\bf{1}}}{{\bf{4}}},{\bf{0}},\frac{{\bf{1}}}{{\bf{2}}}} \right)\),\(\left( {{\bf{0}},\frac{{\bf{3}}}{{\bf{4}}},\frac{{\bf{1}}}{{\bf{4}}},{\bf{0}}} \right)\),\(\left( {{\bf{0}}, - {\bf{2}},{\bf{0}},{\bf{3}}} \right)\), and \(\left( {\frac{{\bf{1}}}{{\bf{3}}},\frac{{\bf{1}}}{{\bf{3}}},\frac{{\bf{1}}}{{\bf{3}}},{\bf{0}}} \right)\), respectively.

Short Answer

Expert verified

\({{\bf{q}}_1}\) is inside the tetrahedron \({\rm{conv}}\,S\), \({{\bf{q}}_2}\) is outside \({\rm{conv}}\,S\), \({{\bf{q}}_3}\) is the edge between \({{\bf{v}}_2}\) and \({{\bf{v}}_3}\). \({{\bf{q}}_4}\) is outside the tetrahedron and \({{\bf{q}}_5}\) is on the face with vertices \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\).

Step by step solution

01

Check for the first coordinate

The barycentric coordinateof the point \({{\bf{q}}_1}\) are all positive, so the point \({{\bf{q}}_1}\) is inside the tetrahedron convex S.

02

Check for the second coordinate

The barycentric coordinate of the point \({{\bf{q}}_2}\)is not positive, so the point \({{\bf{q}}_2}\) is outside the tetrahedron convexS.

03

Check for the third coordinate

The first and fourth barycentric coordinate of the point \({{\bf{q}}_3}\)is zero, representing the edge between \({{\bf{v}}_2}\) and \({{\bf{v}}_3}\).

04

Check for the fourth coordinate

The barycentric coordinate of the point \({{\bf{q}}_4}\)is not positive, so the point \({{\bf{q}}_4}\) is outside the tetrahedron convex S.

05

Check for the fifth coordinate

The point \({{\bf{q}}_5}\) is a convex combination of vectors \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\), hence \({{\bf{q}}_5}\) lies on face containing the vertices \({{\bf{v}}_1}\), \({{\bf{v}}_2}\), and \({{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

Suppose that\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is an affinely independent set in\({\mathbb{R}^{\bf{n}}}\)and q is an arbitrary point in\({\mathbb{R}^{\bf{n}}}\). Show that the translated set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)is also affinely independent.

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free