The “B” in B-spline refers to the fact that a segment \({\bf{x}}\left( t \right)\)may be written in terms of a basis matrix, \(\,{M_S}\) , in a form similar to a Bézier curve. That is,

\({\bf{x}}\left( t \right) = G{M_S}{\bf{u}}\left( t \right)\)for \(\,0 \le t \le 1\)

where \(G\) is the geometry matrix \(\,\left( {{{\bf{p}}_{\bf{0}}}\,\,\,\,{{\bf{p}}_{{\bf{1}}\,\,\,}}\,{{\bf{p}}_{\bf{2}}}\,\,\,{{\bf{p}}_{\bf{3}}}} \right)\)and \({\bf{u}}\left( {\bf{t}} \right)\) is the column vector \(\left( {1,\,\,t,\,\,{t^2},\,{t^3}} \right)\) . In a uniform B-spline, each segment uses the same basis matrix \(\,{M_S}\), but the geometry matrix changes. Construct the basis matrix \(\,{M_S}\) for \({\bf{x}}\left( t \right)\).

Short Answer

Expert verified

The basis matrix is \({M_S} = \left( {\begin{array}{{}}1&{ - 3}&3&{ - 1}\\4&0&{ - 6}&3\\1&3&3&{ - 3}\\0&0&0&1\end{array}} \right)\).

Step by step solution

01

Write matrix \({\bf{x}}\left( t \right) = G{M_S}{\bf{u}}\left( t \right)\)for control points\(\,\left( {{{\bf{p}}_{\bf{0}}}\,\,\,\,{{\bf{p}}_{{\bf{1}}\,\,\,}}\,{{\bf{p}}_{\bf{2}}}\,\,\,{{\bf{p}}_{\bf{3}}}} \right)\)

The matrix \({\rm{x}}\left( t \right) = G{M_S}{\rm{u}}\left( t \right)\)is given as \({\bf{x}}\left( t \right) = \frac{1}{6}\left( {\left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_o} + \left( {4 - 6{t^2} + 3{t^3}} \right){{\bf{p}}_1} + \left( {1 + 3t + 3{t^2} - 3{t^3}} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}} \right)\) for \(0 \le t \le 1\) .

02

Step 2:Write vector of weights of \({\bf{x}}\left( t \right)\)

The weighted vector of \({\rm{x}}\left( t \right)\)is\(\frac{1}{6}\left( {\begin{array}{{}}{1 - 3t + 3{t^2} - {t^3}}\\{4 - 6{t^2} + 3{t^3}}\\{1 + 3t + 3{t^2} - 3{t^3}}\\{\,\,\,\,\,\,{t^3}}\end{array}} \right)\).

03

The weighted matrix

Factor the weighted vector as\({M_S}{\bf{u}}\left( t \right)\), where\({\bf{u}}\left( t \right)\)is the column vector involving ascending powers of t as shown below:

\({M_S}{\bf{u}}\left( t \right) = \left( {\begin{array}{{}}1&{ - 3}&3&{ - 1}\\4&0&{ - 6}&3\\1&3&3&{ - 3}\\0&0&0&1\end{array}} \right)\left( \begin{array}{l}1\\t\\{t^2}\\{t^3}\end{array} \right)\)

04

Compare and write \({M_S}\)

The basis matrix is \({M_S} = \left( {\begin{array}{{}}1&{ - 3}&3&{ - 1}\\4&0&{ - 6}&3\\1&3&3&{ - 3}\\0&0&0&1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

Question: 12. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

a. If \(S = \left\{ {\bf{x}} \right\}\), then \({\rm{aff}}\,S\) is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyper plane.

e. A flat through the origin is a subspace.

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{5}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{5}}&{ - {\bf{3}}}&{\bf{0}}&{\bf{6}}\end{array}} \right)\). Note that \({\bf{Nul}}\,\,A\) is in \({\mathbb{R}^{\bf{5}}}\). Let \(H = {\bf{Nul}}\,\,A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free