Chapter 8: Q11E (page 437)
Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Short Answer
Any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Chapter 8: Q11E (page 437)
Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
Any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).
a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)
b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)
c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)
Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).
Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.
Question: In Exercise 9, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).
9. \(\left( {\begin{array}{*{20}{c}}1\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\3\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\2\\2\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\1\\1\\1\end{array}} \right)\)
In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.
8. \(\left( {\begin{array}{{}}0\\1\\{ - 2}\\1\end{array}} \right),\left( {\begin{array}{{}}1\\1\\0\\2\end{array}} \right),\left( {\begin{array}{{}}1\\4\\{ - 6}\\5\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}{ - 1}\\1\\{ - 4}\\0\end{array}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.