Question: In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11.a. The cubic Bezier curve is based on four control points.

b. Given a quadratic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\), the directed line segment \({{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}\) (from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\)) is the tangent vector to the curve at \({{\mathop{\rm p}\nolimits} _0}\).

c. When two quadratic Bezier curves with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\) and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) are joined at \({{\mathop{\rm p}\nolimits} _2}\), the combined Bezier curve will have \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\)if\({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment between \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _3}\).

Short Answer

Expert verified
  1. The statement is True.
  2. The statement is False.
  3. The statement is True.

Step by step solution

01

Determine whether the given statement is True or False

a)

Thecubic Bezier curveis determined by four control points. The standard form is shown below:

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^3}{{\bf{p}}_0} + 3t{\left( {1 - t} \right)^2}{{\bf{p}}_1} + 3{t^2}\left( {1 - t} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\)

Thus, the given statement (a) is True.

02

Determine whether the given statement is True or False

b)

Recall that thetangent vectorat \({{\mathop{\rm p}\nolimits} _0}\), for instance, from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\), and it is twice as long as the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

Thus, the given statement (b) is False.

03

Determine whether the given statement is True or False

c)

It is true that when two quadratic Bezier curve with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\)and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).

The Bezier curve has \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\) when joined at \({{\mathop{\rm p}\nolimits} _2}\), then \({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _3}\).

Thus, the given statement (c) is True.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

Question: 12. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

a. If \(S = \left\{ {\bf{x}} \right\}\), then \({\rm{aff}}\,S\) is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyper plane.

e. A flat through the origin is a subspace.

Question: In Exercise 9, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}1\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\3\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\2\\2\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\1\\1\\1\end{array}} \right)\)

Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 23.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free