Question: a. Determine the number of k-faces of the 5-dimensional simplex \({S^{\bf{5}}}\) for \(k = {\bf{0}},{\bf{1}},.....,{\bf{4}}\). Verify that your answer satisfies Euler’s formula.

b. Make a chart of the values of \({f_k}\left( {{S^n}} \right)\) for \(n = {\bf{1}},.....,{\bf{5}}\) and \(k = {\bf{0}},{\bf{1}},.....,{\bf{4}}\). Can you see a pattern? Guess a general formula for \({f_k}\left( {{S^n}} \right)\).

Short Answer

Expert verified

a. 6, 15, 20, 15, 6

b.

\({f_0}\)

\({f_1}\)

\({f_2}\)

\({f_3}\)

\({f_4}\)

\({S^1}\)

2

\({S^2}\)

3

3

\({S^3}\)

4

6

4

\({S^4}\)

5

10

10

5

\({S^5}\)

6

15

20

15

6

There exist a pattern for \({f_k}\left( {{S^n}} \right)\) and it is given by the formula \({f_k}\left( {{S^n}} \right) = \left( {\begin{array}{*{20}{c}}{n + 1}\\{k + 1}\end{array}} \right)\), here \(\left( {\begin{array}{*{20}{c}}a\\b\end{array}} \right) = \frac{{a!}}{{b!\left( {a - b} \right)!}}\) is the binomial coefficient.

Step by step solution

01

Find the solution for part (a)

The number of faces for \(k = 0\):

\({f_0}\left( {{S^5}} \right) = 6\)

The number of faces for \(k = 1\):

\({f_1}\left( {{S^5}} \right) = 15\)

The number of faces for \(k = 2\):

\({f_2}\left( {{S^5}} \right) = 20\)

The number of faces for \(k = 3\):

\({f_3}\left( {{S^5}} \right) = 15\)

The number of faces for \(k = 4\):

\({f_4}\left( {{S^5}} \right) = 6\)

02

Verify the Euler’s formula

Euler’s formula can be verified as follows:

\(\begin{array}{c}{f_0}\left( {{S^5}} \right) - {f_1}\left( {{S^5}} \right) + {f_2}\left( {{S^5}} \right) - {f_3}\left( {{S^5}} \right) + {f_4}\left( {{S^5}} \right) = 6 - 15 + 20 - 15 + 6\\ = 2\end{array}\)

So, Euler’s formula is verified.

03

Find the solution for part (b)

The table below represents the values of \({f_k}\left( {{S^n}} \right)\).

\({f_0}\)

\({f_1}\)

\({f_2}\)

\({f_3}\)

\({f_4}\)

\({S^1}\)

2

\({S^2}\)

3

3

\({S^3}\)

4

6

4

\({S^4}\)

5

10

10

5

\({S^5}\)

6

15

20

15

6

There exist a pattern for the values in the chart. The pattern for the above chart is given by the formula \({f_k}\left( {{S^n}} \right) = \left( {\begin{array}{*{20}{c}}{n + 1}\\{k + 1}\end{array}} \right)\). Here \(\left( {\begin{array}{*{20}{c}}a\\b\end{array}} \right) = \frac{{a!}}{{b!\left( {a - b} \right)!}}\) is the binomial coefficient.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

Question: 1. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

Question: In Exercise 8, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{7}}\\{ - {\bf{4}}}\\{\bf{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free